Menjawab:
Silakan lihat di bawah.
Penjelasan:
Tiga kali angka dikurangi angka lainnya
Jumlah angkanya adalah
(1) + (2):
Karena itu kedua angka tersebut adalah
Jumlah tiga angka adalah 137. Angka kedua empat lebih dari, dua kali angka pertama. Angka ketiga adalah lima kurang dari, tiga kali angka pertama. Bagaimana Anda menemukan tiga angka itu?
Angka-angka adalah 23, 50 dan 64. Mulailah dengan menulis ekspresi untuk masing-masing dari tiga angka. Mereka semua terbentuk dari angka pertama, jadi mari kita sebut angka pertama x. Biarkan angka pertama menjadi x Angka kedua adalah 2x +4 Angka ketiga adalah 3x -5 Kita diberitahu bahwa jumlah mereka adalah 137. Ini berarti ketika kita menambahkan semuanya, jawabannya adalah 137. Tulis persamaan. (x) + (2x + 4) + (3x - 5) = 137 Kurung tidak perlu, mereka termasuk untuk kejelasan. 6x -1 = 137 6x = 138 x = 23 Begitu kita tahu angka pertama, kita dapat mencari dua lainnya dari ekspresi yang kita tulis di awal. 2x + 4 = 2 xx
Dua kali angka minus angka kedua adalah -1. Dua kali angka kedua ditambahkan menjadi tiga kali angka pertama adalah 9. Bagaimana Anda menemukan dua angka itu?
Angka pertama adalah 1 dan angka kedua adalah 3. Kami menganggap angka pertama sebagai x dan yang kedua sebagai y. Dari data, kita dapat menulis dua persamaan: 2x-y = -1 3x + 2y = 9 Dari persamaan pertama, kita memperoleh nilai untuk y. 2x-y = -1 Tambahkan y ke kedua sisi. 2x = -1 + y Tambahkan 1 ke kedua sisi. 2x + 1 = y atau y = 2x + 1 Pada persamaan kedua, gantikan y dengan warna (merah) ((2x + 1)). 3x + 2color (red) ((2x + 1)) = 9 Buka tanda kurung dan sederhanakan. 3x + 4x + 2 = 9 7x + 2 = 9 Kurangi 2 dari kedua sisi. 7x = 7 Bagilah kedua belah pihak dengan 7. x = 1 Pada persamaan pertama, gantikan x dengan warna (mer
Dua kali angka ditambah tiga kali angka lain sama dengan 4. Tiga kali angka pertama ditambah empat kali angka lainnya adalah 7. Berapa angkanya?
Angka pertama adalah 5 dan yang kedua adalah -2. Biarkan x menjadi angka pertama dan y menjadi yang kedua. Maka kita memiliki {(2x + 3y = 4), (3x + 4y = 7):} Kita dapat menggunakan metode apa pun untuk menyelesaikan sistem ini. Misalnya, dengan eliminasi: Pertama, menghilangkan x dengan mengurangi kelipatan dari persamaan kedua dari yang pertama, 2x + 3y-2/3 (3x + 4y) = 4 - 2/3 (7) => 1 / 3y = - 2/3 => y = -2 kemudian menggantikan hasil itu kembali ke persamaan pertama, 2x + 3 (-2) = 4 => 2x - 6 = 4 => 2x = 10 => x = 5 Dengan demikian angka pertama adalah 5 dan yang kedua adalah -2. Memeriksa dengan mencolok