Istilah 2, 6 dan 8 dari perkembangan Aritmatika adalah tiga istilah berturut-turut dari Geometric.P. Bagaimana menemukan rasio umum dari G.P dan mendapatkan ekspresi untuk istilah ke-G. dari G.P?
Metode saya tidak menyelesaikannya! Total penulisan ulang r = 1/2 "" => "" a_n = a_1 (1/2) ^ (n-1) Untuk membuat perbedaan antara dua urutan jelas saya menggunakan notasi berikut: a_2 = a_1 + d "" -> "" tr ^ 0 "" ............... Persamaan (1) a_6 = a_1 + 5d "" -> "" tr "" ........ ........ Persamaan (2) a_8 = a_1 + 7d "" -> "" tr ^ 2 "" ............... Persamaan (3) ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Eqn (2) -Eqn (1) a_1 + 5d = tr ul (a_1 + warna (putih) (5) d = t larr "Kurangi" "
Istilah pertama dan kedua dari urutan geometri masing-masing adalah pertama dan ketiga dari urutan linear. Istilah keempat dari urutan linear adalah 10 dan jumlah dari lima istilah pertama adalah 60. Menemukan lima istilah pertama dari urutan linear?
{16, 14, 12, 10, 8} Urutan geometri tipikal dapat direpresentasikan sebagai c_0a, c_0a ^ 2, cdots, c_0a ^ k dan deret aritmatika khas seperti c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Memanggil c_0 a sebagai elemen pertama untuk deret geometri yang kita miliki {(c_0 a ^ 2 = c_0a + 2Delta -> "GS pertama dan kedua adalah yang pertama dan ketiga dari LS"), (c_0a + 3Delta = 10- > "Istilah keempat dari urutan linear adalah 10"), (5c_0a + 10Delta = 60 -> "Jumlah dari lima istilah pertama adalah 60"):} Memecahkan untuk c_0, a, Delta yang kita peroleh c_0 = 64/3 , a = 3/4, Delta
Istilah pertama dari deret geometri adalah 4 dan pengali, atau rasio, adalah –2. Berapa jumlah dari 5 syarat pertama dari urutan?
Istilah pertama = a_1 = 4, rasio umum = r = -2 dan jumlah istilah = n = 5 Jumlah deret geometri hingga n diberikan oleh S_n = (a_1 (1-r ^ n)) / (1-r ) Di mana S_n adalah jumlah ke n istilah, n adalah jumlah istilah, a_1 adalah istilah pertama, r adalah rasio umum. Di sini a_1 = 4, n = 5 dan r = -2 menyiratkan S_5 = (4 (1 - (- 2) ^ 5)) / (1 - (- 2)) = (4 (1 - (- 32)))) / (1 + 2) = (4 (1 + 32)) / 3 = (4 (33)) / 3 = 4 * 11 = 44 Maka, jumlahnya adalah 44