Menjawab:
Persamaan garis singgung
Penjelasan:
Kita mulai dari persamaan yang diberikan
Mari kita pecahkan untuk titik singgung pertama
Mari kita selesaikan untuk lerengnya
Temukan turunan pertama terlebih dahulu
Lereng
Garis Tangen Kami:
Mohon lihat grafik
Tuhan memberkati …. Semoga penjelasannya bermanfaat.
Persamaan garis adalah 2x + 3y - 7 = 0, cari: - (1) kemiringan garis (2) persamaan garis tegak lurus dengan garis yang diberikan dan melewati persimpangan garis x-y + 2 = 0 dan 3x + y-10 = 0?
-3x + 2y-2 = 0 warna (putih) ("ddd") -> warna (putih) ("ddd") y = 3 / 2x + 1 Bagian pertama dalam banyak detail menunjukkan bagaimana prinsip pertama bekerja. Setelah terbiasa dengan ini dan menggunakan cara pintas Anda akan menggunakan lebih sedikit garis. warna (biru) ("Tentukan intersep dari persamaan awal") x-y + 2 = 0 "" ....... Persamaan (1) 3x + y-10 = 0 "" .... Persamaan ( 2) Kurangi x dari kedua sisi Persamaan (1) beri -y + 2 = -x Kalikan kedua sisi dengan (-1) + y-2 = + x "" .......... Persamaan (1_a ) Menggunakan Eqn (1_a) menggantikan x dalam Eqn (2
Biarkan P (x_1, y_1) menjadi titik dan biarkan aku menjadi garis dengan persamaan kapak + oleh + c = 0.Perlihatkan jarak d dari P-> l diberikan oleh: d = (ax_1 + by_1 + c) / sqrt (a ^ 2 + b ^ 2)? Temukan jarak d dari titik P (6,7) dari garis l dengan persamaan 3x + 4y = 11?
D = 7 Biarkan l-> a x + b y + c = 0 dan p_1 = (x_1, y_1) suatu titik tidak pada l. Andaikata bahwa 0 dan memanggil d ^ 2 = (x-x_1) ^ 2 + (y-y_1) ^ 2 setelah mengganti y = - (a x + c) / b ke d ^ 2 kita memiliki d ^ 2 = ( x - x_1) ^ 2 + ((c + ax) / b + y_1) ^ 2. Langkah selanjutnya adalah menemukan minimum d ^ 2 tentang x sehingga kita akan menemukan x sedemikian rupa sehingga d / (dx) (d ^ 2) = 2 (x - x_1) - (2 a ((c + ax) / b + y_1 )) / b = 0. Kejadian ini untuk x = (b ^ 2 x_1 - ab y_1-ac) / (a ^ 2 + b ^ 2) Sekarang, mengganti nilai ini ke d ^ 2 kita memperoleh d ^ 2 = (c + a x_1 + b y_1) ^ 2 / (a ^ 2 + b ^ 2) jadi d
Tunjukkan bahwa untuk semua nilai m garis lurus x (2m-3) + y (3-m) + 1-2m = 0 lulus melalui titik perpotongan dari dua garis tetap. Untuk nilai m apa garis garis dibagi sudut antara dua garis tetap?
M = 2 dan m = 0 Memecahkan sistem persamaan x (2 m - 3) + y (3 - m) + 1 - 2 m = 0 x (2 n - 3) + y (3 - n) + 1 - 2 n = 0 untuk x, y kita mendapatkan x = 5/3, y = 4/3 Pembagian diperoleh dengan membuat (kemiringan lurus) (2m-3) / (3-m) = 1-> m = 2 dan ( 2m-3) / (3-m) = -1-> m = 0