Menjawab:
a = 2
Penjelasan:
Setelah ekspansi, suku konstanta harus dihilangkan untuk memastikan ketergantungan polinomial sepenuhnya pada x. Perhatikan bahwa
Pengaturan a = 2 menghilangkan konstanta juga
(Tolong koreksi saya jika saya salah)
Istilah pertama dan kedua dari urutan geometri masing-masing adalah pertama dan ketiga dari urutan linear. Istilah keempat dari urutan linear adalah 10 dan jumlah dari lima istilah pertama adalah 60. Menemukan lima istilah pertama dari urutan linear?
{16, 14, 12, 10, 8} Urutan geometri tipikal dapat direpresentasikan sebagai c_0a, c_0a ^ 2, cdots, c_0a ^ k dan deret aritmatika khas seperti c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Memanggil c_0 a sebagai elemen pertama untuk deret geometri yang kita miliki {(c_0 a ^ 2 = c_0a + 2Delta -> "GS pertama dan kedua adalah yang pertama dan ketiga dari LS"), (c_0a + 3Delta = 10- > "Istilah keempat dari urutan linear adalah 10"), (5c_0a + 10Delta = 60 -> "Jumlah dari lima istilah pertama adalah 60"):} Memecahkan untuk c_0, a, Delta yang kita peroleh c_0 = 64/3 , a = 3/4, Delta
Istilah keempat dari suatu AP sama dengan tiga kali istilah ketujuh melebihi dua kali istilah ketiga dengan 1. Cari istilah pertama dan perbedaan umum?
A = 2/13 d = -15/13 T_4 = 3 T_7 ......... (1) T_4 - 2T_3 = 1 ........ (2) T_n = a + (n- 1) d T_4 = a + 3d T_7 = a + 6d T_3 = a + 2d Mengganti nilai dalam (1) persamaan, a + 3d = 3a + 18d = 2a + 15d = 0 .......... .... (3) Mengganti nilai dalam persamaan (2), a + 3d - (2a + 4d) = 1 = a + 3d - 2a - 4d = 1 -a -d = 1 a + d = -1. ........... (4) Pada penyelesaian persamaan (3) dan (4) secara bersamaan kita dapatkan, d = 2/13 a = -15/13
Ketika polinomial memiliki empat istilah dan Anda tidak dapat memfaktorkan sesuatu dari semua istilah, atur ulang polinomial sehingga Anda dapat memfaktorkan dua istilah sekaligus. Kemudian tuliskan dua binomial yang akhirnya Anda miliki. (4ab + 8b) - (3a + 6)?
(a + 2) (4b-3) "langkah pertama adalah menghapus tanda kurung" rArr (4ab + 8b) (merah) (- 1) (3a + 6) = 4ab + 8b-3a-6 "sekarang memfaktorkan istilah dengan 'mengelompokkan' mereka "warna (merah) (4b) (a + 2) warna (merah) (- 3) (a + 2)" mengambil "(a + 2)" sebagai faktor umum dari masing-masing kelompok "= (a + 2) (warna (merah) (4b-3)) rR (4ab + 8b) - (3a + 6) = (a + 2) (4b-3) warna (biru)" Sebagai tanda centang " (a + 2) (4b-3) larr "ekspansi menggunakan FOIL" = 4ab-3a + 8b-6larr "dibandingkan dengan ekspansi di atas"