
Menjawab:
Penjelasan:
Untuk dosa kt dan cos kt, periode adalah
Di sini, periode untuk osilasi terpisah
Jadi, untuk osilasi majemuk
periode) adalah nilai umum
Apa periode dari f (t) = dosa (t / 36) + cos ((t) / 7)?

504pi Dalam f (t) periode dosa (t / 36) adalah (2pi) / (1/36) = 72 pi. Periode cos (t / 7) akan menjadi (2pi) / (1/7) = 14 pi. Oleh karena itu periode f (t) akan menjadi kelipatan paling umum dari 72pi dan 14pi yaitu 504pi
Bagaimana Anda mengevaluasi dosa ((5pi) / 9) cos ((7pi) / 18) -cos ((5pi) / 9) dosa ((7pi) / 18)?

1/2 Persamaan ini dapat diselesaikan dengan menggunakan beberapa pengetahuan tentang beberapa identitas trigonometri.Dalam hal ini, perluasan dosa (A-B) harus diketahui: sin (A-B) = sinAcosB-cosAsinB Anda akan melihat bahwa ini terlihat sangat mirip dengan persamaan dalam pertanyaan. Dengan menggunakan pengetahuan, kita dapat menyelesaikannya: sin ((5pi) / 9) cos ((7pi) / 18) -cos ((5pi) / 9) sin ((7pi) / 18) = sin ((5pi) / 9 - (7pi) / 18) = sin ((10pi) / 18- (7pi) / 18) = sin ((3pi) / 18) = sin ((pi) / 6), dan yang memiliki nilai tepat 1/2
Buktikan bahwa Dosa (pi / 4 + x) + dosa (pi / 4 - x) = root 2 cos x?

LHS = sin (45 ° + x) + sin (45 ° -x) = 2sin ((45 + x + 45-x) / 2) * cos ((45 + x-45 + x) / 2) = 2 * sin45 * cosx = (sqrt2 * cancelsqrt2) * (1 / cancelsqrt2) cosx = sqrt2cosx = RHS