Anda memiliki formulir:
Jadi dalam kasus Anda:
Amplitudo =
Periode =
Secara grafis:
grafik {2cos (4x + pi) -1 -10, 10, -5, 5}
Perhatikan bahwa Anda
Berapa periode dan amplitudo dan frekuensi untuk s = 3 cos 5t?
Cosinus berosilasi antara 1 dan -1 sehingga Anda mengalikannya dengan 3 berosilasi antara 3 dan -3, amplitudo Anda adalah 3. cos (0) = cos (2pi) ini adalah kondisi untuk suatu siklus. jadi untuk persamaan Anda cos (5 · 0 = 0) = cos (5 · t = 2pi) Anda harus menyelesaikan 5t = 2pi solusi mana yang t = 2pi / 5 setelah ini t Anda telah membuat siklus lengkap jadi t adalah periode
Berapa periode dan amplitudo untuk f (x) = 2cos (3x + 2)?
Periode dan amplitudo f (x) = 2cos (3x + 2) Amplitudo (-2, 2) Periode cos x adalah 2pi. Kemudian, periode cos 3x adalah: (2pi) / 3
Berapa periode dan amplitudo untuk y = -1 / 2cos (3x + 4pi / 3)?
Amplitudo = | A | = 1/2 Periode = (2pi) / | B | = (2pi) / 3 Bentuk standar dari fungsi cos adalah y = A cos (Bx - C) + D Diberikan y = (1/2) cos (3x + warna (crimson) ((4pi) / 3)) A = 1/2, B = 3, C = (4pi) / 3 Amplitude = | A | = 1/2 Periode = (2pi) / | B | = (2pi) / 3 Pergeseran Fase = -C / B = ((4pi) / 3) / 3 = (4pi) / 9 Pergeseran Vertikal = D = 0 #