Dua sudut segitiga memiliki sudut pi / 3 dan pi / 12. Jika satu sisi segitiga memiliki panjang 8, berapakah batas terpanjang dari segitiga?

Dua sudut segitiga memiliki sudut pi / 3 dan pi / 12. Jika satu sisi segitiga memiliki panjang 8, berapakah batas terpanjang dari segitiga?
Anonim

Menjawab:

Area segitiga terbesar yang mungkin adalah 103.4256

Penjelasan:

Diberikan adalah dua sudut # (pi) / 12 # dan # pi / 3 # dan panjangnya 8

Sudut yang tersisa:

# = pi - (((pi) / 12) + pi / 3) = ((7pi) / 12 #

Saya mengasumsikan bahwa panjang AB (1) berlawanan dengan sudut terkecil.

Menggunakan ASA

Daerah# = (c ^ 2 * dosa (A) * dosa (B)) / (2 * dosa (C) #

Daerah# = (8 ^ 2 * dosa (pi / 3) * dosa ((7pi) / 12)) / (2 * dosa (pi / 12)) #

Daerah#=103.4256#