Menjawab:
Penjelasan:
Multiple Least Common Multiple (LCM) dari dua angka dapat ditemukan dengan cukup cepat dengan menggunakan teknik ini.
-
Pertama lihat apakah jumlah yang lebih besar dapat dibagi secara merata dengan jumlah yang lebih kecil. Jika bisa, angka yang lebih besar adalah LCM:
#84/63 ~~1.333; ' '84# bukan LCM -
Gandakan angka yang lebih besar dan lihat apakah dapat dibagi secara merata dengan angka yang lebih kecil. Jika bisa, angka yang lebih besar adalah LCM:
#168/63~~2.666# ;#' '2(84) = 168# bukan LCM -
Tiga kali lipat dari jumlah yang lebih besar dan lihat apakah dapat dibagi secara merata dengan jumlah yang lebih kecil. Jika bisa, angka yang lebih besar adalah LCM:
#252/63 = 4; '3(84) = 252# adalah LCM
Istilah pertama dan kedua dari urutan geometri masing-masing adalah pertama dan ketiga dari urutan linear. Istilah keempat dari urutan linear adalah 10 dan jumlah dari lima istilah pertama adalah 60. Menemukan lima istilah pertama dari urutan linear?
{16, 14, 12, 10, 8} Urutan geometri tipikal dapat direpresentasikan sebagai c_0a, c_0a ^ 2, cdots, c_0a ^ k dan deret aritmatika khas seperti c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Memanggil c_0 a sebagai elemen pertama untuk deret geometri yang kita miliki {(c_0 a ^ 2 = c_0a + 2Delta -> "GS pertama dan kedua adalah yang pertama dan ketiga dari LS"), (c_0a + 3Delta = 10- > "Istilah keempat dari urutan linear adalah 10"), (5c_0a + 10Delta = 60 -> "Jumlah dari lima istilah pertama adalah 60"):} Memecahkan untuk c_0, a, Delta yang kita peroleh c_0 = 64/3 , a = 3/4, Delta
'L bervariasi bersama sebagai a dan kuadrat akar dari b, dan L = 72 ketika a = 8 dan b = 9. Temukan L ketika a = 1/2 dan b = 36? Y bervariasi bersama sebagai kubus x dan akar kuadrat dari w, dan Y = 128 ketika x = 2 dan w = 16. Cari Y ketika x = 1/2 dan w = 64?
L = 9 "dan" y = 4> "pernyataan awal adalah" Lpropasqrtb "untuk mengkonversi ke persamaan, kalikan dengan k" "variasi" rArrL = kasqrtb "untuk menemukan k gunakan kondisi yang diberikan" L = 72 "ketika "a = 8" dan "b = 9 L = kasqrtbrArrk = L / (asqrtb) = 72 / (8xxsqrt9) = 72/24 = 3" persamaan adalah "warna (merah) (bar (ul (| warna (putih) ( 2/2) warna (hitam) (L = 3asqrtb) warna (putih) (2/2) |))) "ketika" a = 1/2 "dan" b = 36 "L = 3xx1 / 2xxsqrt36 = 3xx1 / 2xx6 = 9 warna (biru) "---------------------------------
Berapakah akar kuadrat dari 7 + akar kuadrat dari 7 ^ 2 + akar kuadrat dari 7 ^ 3 + akar kuadrat dari 7 ^ 4 + akar kuadrat dari 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Hal pertama yang dapat kita lakukan adalah membatalkan root pada yang memiliki kekuatan genap. Karena: sqrt (x ^ 2) = x dan sqrt (x ^ 4) = x ^ 2 untuk semua nomor, kita dapat mengatakan bahwa sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Sekarang, 7 ^ 3 dapat ditulis ulang sebagai 7 ^ 2 * 7, dan 7 ^ 2 itu bisa keluar dari root! Hal yang sama berlaku untuk 7 ^ 5 tetapi ditulis ulang sebagai 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 +