Menjawab:
Panjang satu sisi adalah
Penjelasan:
Biarkan panjang sisi, ketinggian (tinggi), dan area masing-masing menjadi s, h, dan A.
Keliling segitiga adalah 29 mm. Panjang sisi pertama adalah dua kali panjang sisi kedua. Panjang sisi ketiga adalah 5 lebih dari panjang sisi kedua. Bagaimana Anda menemukan panjang sisi segitiga?
S_1 = 12 s_2 = 6 s_3 = 11 Perimeter segitiga adalah jumlah dari panjang semua sisinya. Dalam hal ini, diberikan bahwa perimeter adalah 29mm. Jadi untuk kasus ini: s_1 + s_2 + s_3 = 29 Jadi untuk panjang sisi, kita menerjemahkan pernyataan dalam bentuk persamaan yang diberikan. "Panjang sisi pertama adalah dua kali panjang sisi kedua" Untuk menyelesaikan ini, kami menetapkan variabel acak untuk s_1 atau s_2. Untuk contoh ini, saya akan membiarkan x menjadi panjang sisi ke-2 untuk menghindari pecahan dalam persamaan saya. jadi kita tahu bahwa: s_1 = 2s_2 tetapi karena kita membiarkan s_2 menjadi x, kita sekarang ta
Segitiga A memiliki luas 12 dan dua sisi dengan panjang 3 dan 8. Segitiga B mirip dengan segitiga A dan memiliki sisi panjang 9. Berapa luas maksimum dan minimum yang mungkin dari segitiga B?
Luas maksimum yang mungkin dari segitiga B = 108 Luas minimum yang mungkin dari segitiga B = 15.1875 Delta s dan B adalah serupa. Untuk mendapatkan area maksimum Delta B, sisi 9 dari Delta B harus sesuai dengan sisi 3 dari Delta A. Sisi berada dalam rasio 9: 3 Maka daerah tersebut akan berada dalam rasio 9 ^ 2: 3 ^ 2 = 81: 9 Luas maksimum segitiga B = (12 * 81) / 9 = 108 Demikian pula untuk mendapatkan area minimum, sisi 8 Delta A akan sesuai dengan sisi 9 Delta B. Sisi berada dalam rasio 9: 8 dan area 81: 64 Area minimum Delta B = (12 * 81) / 64 = 15.1875
Segitiga A memiliki luas 12 dan dua sisi dengan panjang 3 dan 8. Segitiga B mirip dengan segitiga A dan memiliki sisi panjang 15. Berapa luas maksimum dan minimum yang mungkin dari segitiga B?
Luas maksimum yang mungkin dari segitiga B adalah 300 sq.unit Luas minimum yang mungkin dari segitiga B adalah 36.99 sq.unit Luas segitiga A adalah a_A = 12 Sudut yang disertakan antara sisi x = 8 dan z = 3 adalah (x * z * sin Y) / 2 = a_A atau (8 * 3 * sin Y) / 2 = 12:. sin Y = 1:. / _Y = sin ^ -1 (1) = 90 ^ 0 Oleh karena itu, sudut yang disertakan antara sisi x = 8 dan z = 3 adalah 90 ^ 0 Sisi y = sqrt (8 ^ 2 + 3 ^ 2) = sqrt 73. Untuk maksimum area dalam segitiga B Sisi z_1 = 15 sesuai dengan sisi terendah z = 3 Kemudian x_1 = 15/3 * 8 = 40 dan y_1 = 15/3 * sqrt 73 = 5 sqrt 73 Area maksimum yang mungkin adalah (x_1 * z_1