Menjawab:
Penjelasan:
Bentuk standar dari persamaan lingkaran adalah
# (x - a) ^ 2 + (y - b) ^ 2 = r ^ 2 # di mana (a, b) adalah koordinat pusat dan r, jari-jari
di sini (a, b) = (7, -3) dan r = 9. Mengganti menjadi persamaan standar memberi
# (x - 7) ^ 2 + (y + 3) ^ 2 = 81 #
Dari 200 anak-anak, 100 memiliki T-Rex, 70 memiliki iPads dan 140 memiliki ponsel. 40 dari mereka memiliki keduanya, T-Rex dan iPad, 30 memiliki keduanya, iPad dan ponsel dan 60 memiliki keduanya, T-Rex dan ponsel dan 10 memiliki ketiganya. Berapa banyak anak yang tidak memiliki ketiganya?
10 tidak memiliki ketiganya. 10 siswa memiliki ketiganya. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Dari 40 siswa yang memiliki T-Rex dan iPad, 10 siswa juga memiliki ponsel (mereka memiliki ketiganya). Jadi 30 siswa memiliki T-Rex dan iPad tetapi tidak semuanya.Dari 30 siswa yang memiliki iPad dan ponsel, 10 siswa memiliki ketiganya. Jadi 20 siswa memiliki iPad dan ponsel tetapi tidak ketiganya. Dari 60 siswa yang memiliki T-Rex dan ponsel, 10 siswa memiliki ketiganya. Jadi 50 siswa memiliki T-Rex dan ponsel tetapi tidak ketiganya. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Dari 100 siswa yang memiliki T-Rex, 10 memiliki ketiga , 30 jug
Lingkaran A memiliki pusat di (3, 5) dan area 78 pi. Lingkaran B memiliki pusat di (1, 2) dan area 54 pi. Apakah lingkaran tumpang tindih?
Ya Pertama, kita perlu jarak antara dua pusat, yaitu D = sqrt ((Deltax) ^ 2 + (Deltay) ^ 2) D = sqrt ((5-2) ^ 2 + (3-1) ^ 2) = sqrt (3 ^ 2 + 2 ^ 2) = sqrt (9 + 4) = sqrt (13) = 3,61 Sekarang kita membutuhkan jumlah jari-jari, karena: D> (r_1 + r_2); "Lingkaran jangan tumpang tindih" D = (r_1 + r_2); "Lingkaran sentuh saja" D <(r_1 + r_2); "Lingkaran tumpang tindih" pir_1 "" ^ 2 = 78pi r_1 "" ^ 2 = 78 r_1 = sqrt78 pir_2 "" ^ 2 = 54pi r_2 "" ^ 2 = 54 r_2 = sqrt54 sqrt78 + sqrt54 = 16.2 16.2> 3.61, jadi lingkaran tumpang tindih. Bukti: grafik {((x-
Lingkaran A memiliki pusat di (6, 5) dan area 6 pi. Lingkaran B memiliki pusat di (12, 7) dan area 48 pi. Apakah lingkaran tumpang tindih?
Karena (12-6) ^ 2 + (7-5) ^ 2 = 40 quad dan 4 (6) (48) - (40 - 6 - 48) ^ 2 = 956> 0 kita dapat membuat segitiga nyata dengan sisi kuadrat 48, 6 dan 40, sehingga lingkaran ini saling berpotongan. # Kenapa pi serampangan? Area adalah A = pi r ^ 2 jadi r ^ 2 = A / pi. Jadi lingkaran pertama memiliki radius r_1 = sqrt {6} dan r_2 kedua = sqrt {48} = 4 sqrt {3}. Pusat-pusatnya adalah sqrt {(12-6) ^ 2 + (7-5) ^ 2} = sqrt {40} = 2 sqrt {10} terpisah. Jadi lingkaran tumpang tindih jika sqrt {6} + 4 sqrt {3} ge 2 sqrt {10}. Itu sangat buruk sehingga Anda akan dimaafkan karena meraih kalkulator. Tapi itu benar-benar tidak perlu.