Menjawab:
Sejak
kita bisa membuat segitiga nyata dengan sisi kuadrat 48, 6 dan 40, sehingga lingkaran ini berpotongan.
Penjelasan:
Kenapa serampangan
Daerah itu
Pusatnya adalah
Jadi lingkaran tumpang tindih jika
Itu sangat buruk sehingga Anda akan dimaafkan karena meraih kalkulator. Tapi itu benar-benar tidak perlu. Mari kita mengambil jalan memutar dan melihat bagaimana hal ini dilakukan dengan menggunakan Trigonometri Rasional. Di sana kami hanya peduli dengan panjang kuadrat, yang disebut kuadran.
Katakanlah kita ingin menguji apakah tiga kuadran
Mengkuadratkan,
Mengkuadratkan lagi,
Ternyata
adalah diskriminan untuk segitiga. Kami hanya menunjukkan jika
Mari kita kembali ke pertanyaan kita yang dipersenjatai dengan diskriminan segitiga baru kita
Oh ya, untuk segitiga apa pun
Periksa: Alpha
Lingkaran A memiliki pusat di (3, 5) dan area 78 pi. Lingkaran B memiliki pusat di (1, 2) dan area 54 pi. Apakah lingkaran tumpang tindih?
Ya Pertama, kita perlu jarak antara dua pusat, yaitu D = sqrt ((Deltax) ^ 2 + (Deltay) ^ 2) D = sqrt ((5-2) ^ 2 + (3-1) ^ 2) = sqrt (3 ^ 2 + 2 ^ 2) = sqrt (9 + 4) = sqrt (13) = 3,61 Sekarang kita membutuhkan jumlah jari-jari, karena: D> (r_1 + r_2); "Lingkaran jangan tumpang tindih" D = (r_1 + r_2); "Lingkaran sentuh saja" D <(r_1 + r_2); "Lingkaran tumpang tindih" pir_1 "" ^ 2 = 78pi r_1 "" ^ 2 = 78 r_1 = sqrt78 pir_2 "" ^ 2 = 54pi r_2 "" ^ 2 = 54 r_2 = sqrt54 sqrt78 + sqrt54 = 16.2 16.2> 3.61, jadi lingkaran tumpang tindih. Bukti: grafik {((x-
Lingkaran A memiliki jari-jari 2 dan pusat (6, 5). Lingkaran B memiliki jari-jari 3 dan pusat (2, 4). Jika lingkaran B diterjemahkan oleh <1, 1>, apakah itu tumpang tindih dengan lingkaran A? Jika tidak, berapa jarak minimum antara titik di kedua lingkaran?
"lingkaran tumpang tindih"> "yang harus kita lakukan di sini adalah membandingkan jarak (d)" "antara pusat dengan jumlah jari-jari" • "jika jumlah jari-jari"> d "maka lingkaran tumpang tindih" • "jika jumlah dari jari-jari "<d" lalu tidak ada tumpang tindih "" sebelum menghitung d, kita perlu menemukan pusat "" B yang baru setelah terjemahan yang diberikan "" di bawah terjemahan "<1,1> (2,4) hingga (2 +1, 4 + 1) hingga (3,5) larrcolor (merah) "pusat baru B" "untuk menghitung d menggunakan"
Lingkaran A memiliki pusat di (1, 5) dan area 24 pi. Lingkaran B memiliki pusat di (8, 4) dan area 66 pi. Apakah lingkaran tumpang tindih?
Ya, lingkaran tumpang tindih. Jarak dari pusat lingkaran A ke pusat lingkaran B = 5sqrt2 = 7.071 Jumlah jari-jari mereka adalah = sqrt66 + sqrt24 = 13.023 Tuhan memberkati .... Saya harap penjelasannya bermanfaat ..