Menjawab:
Penjelasan:
Untuk
Untuk
Jarak
Fungsi f sedemikian rupa sehingga f (x) = a ^ 2x ^ 2-ax + 3b untuk x <1 / (2a) Dimana a dan b adalah konstan untuk kasus di mana a = 1 dan b = -1 Temukan f ^ - 1 (cf dan temukan domainnya saya tahu domain f ^ -1 (x) = rentang f (x) dan -13/4 tapi saya tidak tahu arah tanda ketidaksetaraan?
Lihat di bawah. a ^ 2x ^ 2-ax + 3b x ^ 2-x-3 Kisaran: Dimasukkan ke dalam bentuk y = a (xh) ^ 2 + kh = -b / (2a) k = f (h) h = 1/2 f (h) = f (1/2) = (1/2) ^ 2- (1/2) -3 = -13 / 4 Nilai minimum -13/4 Ini terjadi pada x = 1/2 Jadi rentangnya adalah (- 13/4, oo) f ^ (- 1) (x) x = y ^ 2-y-3 y ^ 2-y- (3-x) = 0 Menggunakan rumus kuadratik: y = (- (- 1) + -sqrt ((- 1) ^ 2-4 (1) (- 3-x))) / 2 y = (1 + -sqrt (4x + 13)) / 2 f ^ (- 1) (x) = ( 1 + sqrt (4x + 13)) / 2 f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Dengan sedikit pemikiran kita dapat melihat bahwa untuk domain kita memiliki invers yang diperlukan adalah : f ^ (- 1) (x) = (1-sqr
Biarkan f menjadi fungsi kontinu: a) Temukan f (4) jika _0 ^ (x ^ 2) f (t) dt = x sin πx untuk semua x. b) Temukan f (4) jika _0 ^ f (x) t ^ 2 dt = x sin πx untuk semua x?
A) f (4) = pi / 2; b) f (4) = 0 a) Bedakan kedua sisi. Melalui Teorema Fundamental Kedua Kalkulus di sisi kiri dan aturan produk dan rantai di sisi kanan, kita melihat bahwa diferensiasi mengungkapkan bahwa: f (x ^ 2) * 2x = sin (pix) + pixcos (pix ) Membiarkan x = 2 menunjukkan bahwa f (4) * 4 = sin (2pi) + 2picos (2pi) f (4) * 4 = 0 + 2pi * 1 f (4) = pi / 2 b) Mengintegrasikan istilah interior. int_0 ^ f (x) t ^ 2dt = xsin (pix) [t ^ 3/3] _0 ^ f (x) = xsin (pix) Evaluasi. (f (x)) ^ 3 / 3-0 ^ 3/3 = xsin (pix) (f (x)) ^ 3/3 = xsin (pix) (f (x)) ^ 3 = 3xsin (pix) Biarkan x = 4. (f (4)) ^ 3 = 3 (4) sin (4pi) (f (4)) ^ 3 = 12