Biarkan f menjadi fungsi kontinu: a) Temukan f (4) jika _0 ^ (x ^ 2) f (t) dt = x sin πx untuk semua x. b) Temukan f (4) jika _0 ^ f (x) t ^ 2 dt = x sin πx untuk semua x?

Biarkan f menjadi fungsi kontinu: a) Temukan f (4) jika _0 ^ (x ^ 2) f (t) dt = x sin πx untuk semua x. b) Temukan f (4) jika _0 ^ f (x) t ^ 2 dt = x sin πx untuk semua x?
Anonim

Menjawab:

Sebuah) #f (4) = pi / 2 #; b) #f (4) = 0 #

Penjelasan:

Sebuah) Bedakan kedua sisi.

Melalui Teorema Fundamental Kedua dari Kalkulus di sisi kiri dan aturan produk dan rantai di sisi kanan, kita melihat bahwa diferensiasi mengungkapkan bahwa:

#f (x ^ 2) * 2x = sin (pix) + pixcos (pix) #

Membiarkan # x = 2 # menunjukkan bahwa

#f (4) * 4 = sin (2pi) + 2picos (2pi) #

#f (4) * 4 = 0 + 2pi * 1 #

#f (4) = pi / 2 #

b) Mengintegrasikan istilah interior.

# int_0 ^ f (x) t ^ 2dt = xsin (pix) #

# t ^ 3/3 _0 ^ f (x) = xsin (pix) #

Evaluasi.

# (f (x)) ^ 3 / 3-0 ^ 3/3 = xsin (pix) #

# (f (x)) ^ 3/3 = xsin (pix) #

# (f (x)) ^ 3 = 3xsin (pix) #

Membiarkan # x = 4 #.

# (f (4)) ^ 3 = 3 (4) sin (4pi) #

# (f (4)) ^ 3 = 12 * 0 #

#f (4) = 0 #