Menjawab:
Penjelasan:
Pertama temukan kemiringan tegak lurus persamaan:
Sekarang gunakan kemiringan di atas dan titik
Demikian,
Anda dapat meninggalkan persamaan seperti ini atau jika perlu, perlu menulis persamaan
Persamaan garis adalah 2x + 3y - 7 = 0, cari: - (1) kemiringan garis (2) persamaan garis tegak lurus dengan garis yang diberikan dan melewati persimpangan garis x-y + 2 = 0 dan 3x + y-10 = 0?
-3x + 2y-2 = 0 warna (putih) ("ddd") -> warna (putih) ("ddd") y = 3 / 2x + 1 Bagian pertama dalam banyak detail menunjukkan bagaimana prinsip pertama bekerja. Setelah terbiasa dengan ini dan menggunakan cara pintas Anda akan menggunakan lebih sedikit garis. warna (biru) ("Tentukan intersep dari persamaan awal") x-y + 2 = 0 "" ....... Persamaan (1) 3x + y-10 = 0 "" .... Persamaan ( 2) Kurangi x dari kedua sisi Persamaan (1) beri -y + 2 = -x Kalikan kedua sisi dengan (-1) + y-2 = + x "" .......... Persamaan (1_a ) Menggunakan Eqn (1_a) menggantikan x dalam Eqn (2
Apa persamaan garis yang melewati titik perpotongan garis y = x dan x + y = 6 dan yang tegak lurus terhadap garis dengan persamaan 3x + 6y = 12?
Barisnya adalah y = 2x-3. Pertama, temukan titik persimpangan y = x dan x + y = 6 menggunakan sistem persamaan: y + x = 6 => y = 6-xy = x => 6-x = x => 6 = 2x => x = 3 dan karena y = x: => y = 3 Titik persimpangan garis adalah (3,3). Sekarang kita perlu menemukan garis yang melewati titik (3,3) dan tegak lurus dengan garis 3x + 6y = 12. Untuk menemukan kemiringan garis 3x + 6y = 12, konversikan ke bentuk garis miring: 3x + 6y = 12 6y = -3x + 12 y = -1 / 2x + 2 Jadi kemiringannya -1/2. Kemiringan garis tegak lurus adalah kebalikannya, sehingga berarti kemiringan garis yang kami coba temukan adalah - (- 2/1) a
Buktikan bahwa diberi garis dan titik tidak pada garis itu, ada tepat satu garis yang melewati titik itu tegak lurus melalui garis itu? Anda dapat melakukan ini secara matematis atau melalui konstruksi (Yunani kuno melakukannya)?
Lihat di bawah. Mari Asumsikan Garis Diberikan adalah AB, dan intinya adalah P, yang bukan pada AB. Sekarang, Mari kita asumsikan, Kami telah menggambar PO tegak lurus pada AB. Kita harus membuktikan bahwa, PO ini adalah satu-satunya garis yang melewati P yang tegak lurus terhadap AB. Sekarang, kita akan menggunakan konstruksi. Mari kita bangun PC tegak lurus lain pada AB dari titik P. Now The Proof. Kami punya, OP tegak lurus AB [saya tidak bisa menggunakan tanda tegak lurus, bagaimana lagi] Dan, Juga, PC tegak lurus AB. Jadi, OP || PC. [Keduanya tegak lurus pada baris yang sama.] Sekarang OP dan PC keduanya memiliki titi