Menjawab:
Penjelasan:
Hal pertama yang harus diatasi di sini adalah bagaimana mengekspresikan "dua bilangan bulat berurutan" secara aljabar.
Terapkan teorema Pythagoras:
# (2x) ^ 2 + (2x + 2) ^ 2 = 10 ^ 2 #
# 4x ^ 2 + 4x ^ 2 + 8x + 4 = 100 #
# 8x ^ 2 + 8x-96 = 0 #
# x ^ 2 + x-12 = 0 #
# (x + 4) (x-3) = 0 #
# x = -4,3 #
Demikian,
Kakinya
# 2xrArr6 #
# 2x + 2rArr8 #
# "hypotenuse" rArr10 #
Cara yang lebih intuitif untuk melakukan masalah ini adalah mengenali bahwa a
Batas segitiga adalah 24 inci. Sisi terpanjang 4 inci lebih panjang dari sisi terpendek, dan sisi terpendek adalah tiga perempat panjang sisi tengah. Bagaimana Anda menemukan panjang setiap sisi segitiga?
Yah masalah ini tidak mungkin. Jika sisi terpanjang adalah 4 inci, tidak mungkin perimeter segitiga bisa 24 inci. Anda mengatakan bahwa 4 + (sesuatu yang kurang dari 4) + (sesuatu yang kurang dari 4) = 24, yang tidak mungkin.
Keliling segitiga adalah 29 mm. Panjang sisi pertama adalah dua kali panjang sisi kedua. Panjang sisi ketiga adalah 5 lebih dari panjang sisi kedua. Bagaimana Anda menemukan panjang sisi segitiga?
S_1 = 12 s_2 = 6 s_3 = 11 Perimeter segitiga adalah jumlah dari panjang semua sisinya. Dalam hal ini, diberikan bahwa perimeter adalah 29mm. Jadi untuk kasus ini: s_1 + s_2 + s_3 = 29 Jadi untuk panjang sisi, kita menerjemahkan pernyataan dalam bentuk persamaan yang diberikan. "Panjang sisi pertama adalah dua kali panjang sisi kedua" Untuk menyelesaikan ini, kami menetapkan variabel acak untuk s_1 atau s_2. Untuk contoh ini, saya akan membiarkan x menjadi panjang sisi ke-2 untuk menghindari pecahan dalam persamaan saya. jadi kita tahu bahwa: s_1 = 2s_2 tetapi karena kita membiarkan s_2 menjadi x, kita sekarang ta
Satu bilangan bulat adalah sembilan lebih dari dua kali bilangan bulat lainnya. Jika produk dari bilangan bulat adalah 18, bagaimana Anda menemukan dua bilangan bulat itu?
Solusi bilangan bulat: warna (biru) (- 3, -6) Biarkan bilangan bulat diwakili oleh a dan b. Kita diberitahu: [1] warna (putih) ("XXX") a = 2b + 9 (Satu bilangan bulat sembilan lebih dari dua kali bilangan bulat lainnya) dan [2] warna (putih) ("XXX") a xx b = 18 (Produk dari bilangan bulat adalah 18) Berdasarkan [1], kami tahu kami dapat mengganti (2b + 9) dengan a di [2]; memberi [3] warna (putih) ("XXX") (2b + 9) xx b = 18 Menyederhanakan dengan target penulisan ini sebagai bentuk kuadrat standar: [5] warna (putih) ("XXX") 2b ^ 2 + 9b = 18 [6] warna (putih) ("XXX") 2b ^ 2