Menjawab:
Rumus untuk luas permukaan segitiga siku-siku adalah A =
Penjelasan:
Contoh 1:
Segitiga kanan memiliki dasar 6 kaki dan tinggi 5 kaki. Temukan luas permukaannya.
A =
A =
A = 15
Daerah ini 15
Contoh 2:
Segitiga kanan memiliki luas permukaan 21
A =
21 =
42 = 6 • h
7 = h
Tingginya 7 inci.
Rumus untuk menemukan luas kotak adalah A = s ^ 2. Bagaimana Anda mengubah rumus ini untuk menemukan rumus untuk panjang sisi persegi dengan luas A?
S = sqrtA Gunakan rumus yang sama dan ubah subjek menjadi s. Dengan kata lain mengisolasi s. Biasanya prosesnya adalah sebagai berikut: Mulailah dengan mengetahui panjang sisi. "side" rarr "kuadratkan sisi" rarr "Area" Lakukan kebalikannya: baca dari kanan ke kiri "side" larr "temukan akar kuadrat" larr "Area" Dalam Matematika: s ^ 2 = A s = sqrtA
Segitiga A memiliki luas 12 dan dua sisi dengan panjang 3 dan 8. Segitiga B mirip dengan segitiga A dan memiliki sisi panjang 9. Berapa luas maksimum dan minimum yang mungkin dari segitiga B?
Luas maksimum yang mungkin dari segitiga B = 108 Luas minimum yang mungkin dari segitiga B = 15.1875 Delta s dan B adalah serupa. Untuk mendapatkan area maksimum Delta B, sisi 9 dari Delta B harus sesuai dengan sisi 3 dari Delta A. Sisi berada dalam rasio 9: 3 Maka daerah tersebut akan berada dalam rasio 9 ^ 2: 3 ^ 2 = 81: 9 Luas maksimum segitiga B = (12 * 81) / 9 = 108 Demikian pula untuk mendapatkan area minimum, sisi 8 Delta A akan sesuai dengan sisi 9 Delta B. Sisi berada dalam rasio 9: 8 dan area 81: 64 Area minimum Delta B = (12 * 81) / 64 = 15.1875
Segitiga A memiliki luas 12 dan dua sisi dengan panjang 3 dan 8. Segitiga B mirip dengan segitiga A dan memiliki sisi panjang 15. Berapa luas maksimum dan minimum yang mungkin dari segitiga B?
Luas maksimum yang mungkin dari segitiga B adalah 300 sq.unit Luas minimum yang mungkin dari segitiga B adalah 36.99 sq.unit Luas segitiga A adalah a_A = 12 Sudut yang disertakan antara sisi x = 8 dan z = 3 adalah (x * z * sin Y) / 2 = a_A atau (8 * 3 * sin Y) / 2 = 12:. sin Y = 1:. / _Y = sin ^ -1 (1) = 90 ^ 0 Oleh karena itu, sudut yang disertakan antara sisi x = 8 dan z = 3 adalah 90 ^ 0 Sisi y = sqrt (8 ^ 2 + 3 ^ 2) = sqrt 73. Untuk maksimum area dalam segitiga B Sisi z_1 = 15 sesuai dengan sisi terendah z = 3 Kemudian x_1 = 15/3 * 8 = 40 dan y_1 = 15/3 * sqrt 73 = 5 sqrt 73 Area maksimum yang mungkin adalah (x_1 * z_1