Menjawab:
Penjelasan:
Urutan aritmatika berbentuk:
Karena itu, kita juga dapat mengatakan:
Dengan demikian, kita dapat menyimpulkan:
Di sini, kita memiliki:
Karena itu:
Istilah 2, 6 dan 8 dari perkembangan Aritmatika adalah tiga istilah berturut-turut dari Geometric.P. Bagaimana menemukan rasio umum dari G.P dan mendapatkan ekspresi untuk istilah ke-G. dari G.P?

Metode saya tidak menyelesaikannya! Total penulisan ulang r = 1/2 "" => "" a_n = a_1 (1/2) ^ (n-1) Untuk membuat perbedaan antara dua urutan jelas saya menggunakan notasi berikut: a_2 = a_1 + d "" -> "" tr ^ 0 "" ............... Persamaan (1) a_6 = a_1 + 5d "" -> "" tr "" ........ ........ Persamaan (2) a_8 = a_1 + 7d "" -> "" tr ^ 2 "" ............... Persamaan (3) ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Eqn (2) -Eqn (1) a_1 + 5d = tr ul (a_1 + warna (putih) (5) d = t larr "Kurangi" "
Istilah pertama dan kedua dari urutan geometri masing-masing adalah pertama dan ketiga dari urutan linear. Istilah keempat dari urutan linear adalah 10 dan jumlah dari lima istilah pertama adalah 60. Menemukan lima istilah pertama dari urutan linear?

{16, 14, 12, 10, 8} Urutan geometri tipikal dapat direpresentasikan sebagai c_0a, c_0a ^ 2, cdots, c_0a ^ k dan deret aritmatika khas seperti c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Memanggil c_0 a sebagai elemen pertama untuk deret geometri yang kita miliki {(c_0 a ^ 2 = c_0a + 2Delta -> "GS pertama dan kedua adalah yang pertama dan ketiga dari LS"), (c_0a + 3Delta = 10- > "Istilah keempat dari urutan linear adalah 10"), (5c_0a + 10Delta = 60 -> "Jumlah dari lima istilah pertama adalah 60"):} Memecahkan untuk c_0, a, Delta yang kita peroleh c_0 = 64/3 , a = 3/4, Delta
Istilah kedua dari urutan aritmatika adalah 24 dan istilah kelima adalah 3. Apa istilah pertama dan perbedaan umum?

Istilah pertama 31 dan perbedaan umum -7 Mari saya mulai dengan mengatakan bagaimana Anda benar-benar dapat melakukan ini, kemudian menunjukkan kepada Anda bagaimana Anda harus melakukannya ... Dalam beralih dari istilah ke-2 ke ke-5 dari urutan aritmatika, kami menambahkan perbedaan umum 3 kali. Dalam contoh kami yang menghasilkan dari 24 ke 3, perubahan -21. Jadi tiga kali perbedaan umum adalah -21 dan perbedaan umum adalah -21/3 = -7 Untuk mendapatkan dari istilah 2 kembali ke yang pertama, kita perlu mengurangi perbedaan umum. Jadi istilah pertama adalah 24 - (- 7) = 31 Jadi itulah bagaimana Anda mungkin beralasan. Sel