Apa bentuk standar y = (2x + 1) (3x - 4) (2x - 1)?

Apa bentuk standar y = (2x + 1) (3x - 4) (2x - 1)?
Anonim

Menjawab:

#y = 12x ^ 3 -16x ^ 2 - 3x + 4 #

Penjelasan:

Pemeriksaan visual dari persamaan menunjukkan bahwa itu adalah fungsi kubik (ada 3 x semuanya dengan eksponen 1). Karenanya kita tahu bahwa bentuk standar dari persamaan akan muncul seperti ini:

#y = kapak ^ 3 + bx ^ 2 + cx + d #

Secara umum dalam menyelesaikan jenis pertanyaan ini, pendekatan yang mungkin akan memperluas persamaan. Kadang-kadang ini terasa membosankan terutama untuk persamaan yang lebih lama namun dengan sedikit kesabaran Anda akan dapat mencapai jawabannya. Tentu saja itu juga akan membantu jika Anda tahu istilah mana yang perlu dikembangkan terlebih dahulu untuk membuat prosesnya tidak terlalu rumit.

Dalam hal ini, Anda dapat memilih dua istilah yang ingin Anda kembangkan terlebih dahulu. Jadi, Anda dapat melakukan salah satu dari yang berikut ini

*Pilihan 1

#y = (2x + 1) (3x - 4) (2x - 1) #

#y = (6x ^ 2 - 8x + 3x - 4) (2x - 1) #

#y = (6x ^ 2 - 5x -4) (2x - 1) #

ATAU

*Pilihan 2

#y = (2x + 1) (2x - 1) (3x - 4) # -> mengatur ulang persyaratan

#y = (4x ^ 2 -1) (3x - 4) #

Perhatikan bahwa dalam Opsi 2 produk dari # (2x + 1) (2x - 1) # mengikuti pola umum # (a + b) (a - b) = a ^ 2 - b ^ 2 #. Dalam hal ini, produk lebih pendek dan lebih sederhana daripada pilihan pertama. Oleh karena itu, meskipun kedua opsi akan mengarahkan Anda ke jawaban akhir yang sama, akan lebih mudah dan mudah bagi Anda untuk mengikuti jawaban ke-2.

Melanjutkan solusi dari Opsi 2

#y = (4x ^ 2 - 1) (3x - 4) #

#y = 12x ^ 3 -16x ^ 2 - 3x + 4 #

Tetapi jika Anda masih memilih untuk melakukan solusi 1 yang ditunjukkan di atas …

#y = (6x ^ 2 - 5x - 4) (2x - 1) #

#y = 12x ^ 3 - 6x ^ 2 - 10 x ^ 2 + 5x - 8x + 4 #

#y = 12x ^ 3 - 16x ^ 2 - 3x + 4 #

… itu masih akan menghasilkan jawaban akhir yang sama