Menjawab:
Kisarannya adalah
Penjelasan:
Perhatikan bahwa penyebut tidak ditentukan kapan saja
atau
Sebagai
Untuk
Kami mendapatkan urutan interval di mana
Kami mencatat bahwa nilai positif terkecil diperoleh kapan pun penyebutnya
Nilai negatif terbesar juga ditemukan
Karena kontinuitas
Kurung keras berarti bahwa angka tersebut termasuk dalam interval (mis.
grafik {1 / (4sin (x) + 2) -10, 10, -5, 5}
Grafik fungsi f (x) = (x + 2) (x + 6) ditunjukkan di bawah ini. Pernyataan mana tentang fungsi yang benar? Fungsi ini positif untuk semua nilai riil x di mana x> –4. Fungsi ini negatif untuk semua nilai riil x di mana –6 <x <–2.
Fungsi ini negatif untuk semua nilai riil x di mana –6 <x <–2.
Himpunan pasangan berurutan (-1, 8), (0, 3), (1, -2), dan (2, -7) mewakili fungsi. Berapa kisaran fungsi?
Rentang untuk kedua komponen pasangan terurut adalah -oo hingga oo. Dari pasangan berurutan (-1, 8), (0, 3), (1, -2) dan (2, -7) diamati bahwa komponen pertama adalah terus meningkat sebesar 1 unit dan komponen kedua terus menurun sebanyak 5 unit. Seperti ketika komponen pertama adalah 0, komponen kedua adalah 3, jika kita membiarkan komponen pertama sebagai x, komponen kedua adalah -5x + 3 Karena x dapat sangat dalam jangkauan dari -oo ke oo, -5x + 3 juga berkisar dari -oo ke oo.
Berapa kisaran fungsi f (x) = x / (x ^ 2-5x + 9)?
-1/11 <= f (x) <= 1 Kisaran adalah himpunan nilai y yang diberikan untuk f (x) Pertama, kita mengatur ulang untuk mendapatkan: yx ^ 2-5xy-x + 9y = 0 Dengan menggunakan rumus kuadratik kita mendapatkan: x = (5thn + 1 + -sqrt ((- 5thn-1) ^ 2-4 (y * 9y))) / (2thn) = (5thn + 1 + -sqrt (-11y ^ 2 + 10y + 1)) / (2thn) x = (5thn + 1 + sqrt (-11y ^ 2 + 10thn + 1)) / (2thn) x = (5thn + 1-sqrt (-11y ^ 2 + 10thn + 1)) / (2y) Karena kami ingin dua persamaan memiliki nilai x yang sama, kami melakukannya: xx = 0 (5y + 1-sqrt (-11y ^ 2 + 10y + 1)) / (2y) - (5y + 1 + sqrt ( -11y ^ 2 + 10y + 1)) / (2y) = - sqrt (-11y ^ 2 + 10y + 1) /