1 + tanA / sinA + 1 + cota / cosA = 2 (detik + cosecA)?

1 + tanA / sinA + 1 + cota / cosA = 2 (detik + cosecA)?
Anonim

Menjawab:

Ini seharusnya berbunyi: Tunjukkan

# {1 + tan A} / {sin A} + {1 + cot A} / {cos A} = 2 (dt A + csc A) #

Penjelasan:

Saya akan menganggap ini masalah untuk dibuktikan, dan harus dibaca

Menunjukkan # {1 + tan A} / {sin A} + {1 + cot A} / {cos A} = 2 (dt A + csc A) #

Mari kita dapatkan common denominator dan tambahkan dan lihat apa yang terjadi.

# {1 + tan A} / {sin A} + {1 + cot A} / {cos A} #

# = {cos A (1 + sin A / cos A) + sin A (1 + cos A / sin A)} / {sin A cos A} #

# = {cos A + sin A + sin A + cos A} / {sin A cos A} #

# = {2cos A} / {sin A cos A} + {2 sin A} / {sin A cos A} #

# = 2 (1 / sin A + 1 / cos A) #

# = 2 (csc A + dtk A) #

# = 2 (dt A + csc A) quad sqrt #

Menjawab:

Diverifikasi di bawah ini

Penjelasan:

# (1 + tanA) / sinA + (1 + cotA) / cosA = 2 (secA + cscA) #

Membagi pembilang:

# 1 / sinA + tanA / sinA + 1 / cosA + cotA / cosA = 2 (secA + cscA) #

Terapkan identitas timbal balik: # 1 / sinA = cscA #, # 1 / cosA = secA #:

# cscA + tanA / sinA + secA + cotA / cosA = 2 (secA + cscA) #

Terapkan identitas hasil bagi: # cotA = cosA / sinA #, # tanA = sinA / cosA #:

# cscA + cancel (sinA) / (cosA / cancel (sinA)) + secA + cancel (cosA) / (sinA / cancel (cosA)) = 2 (secA + cscA) #

Terapkan identitas timbal balik:

# cscA + secA + secA + cscA = 2 (secA + cscA) #

Gabungkan istilah seperti:

# 2cscA + 2secA = 2 (secA + cscA) #

Faktor keluar 2:

# 2 (secA + cscA) = 2 (secA + cscA) #