Sin ^ 4x-cos ^ 4x = 1-2cos ^ 2x buktikan?

Sin ^ 4x-cos ^ 4x = 1-2cos ^ 2x buktikan?
Anonim

Kami ingin menunjukkan itu # sin ^ 4x-cos ^ 4x = 1-2cos ^ 2x #

Kami akan bekerja dengan LHS:

Menggunakan identitas # sin ^ 2x + cos ^ 2x- = 1 # kita mendapatkan:

# (1-cos ^ 2x) ^ 2-cos ^ 4x #

# 1-2cos ^ 2x + cos ^ 4x-cos ^ 4x #

# 1-2cos ^ 2x #

# LHS = 1-2cos ^ 2x #

# LHS = RHS #

Menjawab:

Lihat penjelasan …

Penjelasan:

Kami akan menggunakan identitas Pythagoras:

# sin ^ 2 x + cos ^ 2 x = 1 #

dari mana kita dapat menyimpulkan:

# sin ^ 2 x = 1 - cos ^ 2 x #

Perhatikan juga bahwa perbedaan identitas kuadrat dapat ditulis:

# A ^ 2-B ^ 2 = (A-B) #

Kita bisa menggunakan ini dengan # A = sin ^ 2 x # dan # B = cos ^ 2 x # sebagai berikut:

# sin ^ 4 x - cos ^ 4 x = (sin ^ 2 x) ^ 2 - (cos ^ 2 x) ^ 2 #

#color (white) (sin ^ 4 x - cos ^ 4 x) = (sin ^ 2 x - cos ^ 2 x) (sin ^ 2 x + cos ^ 2 x) #

#color (white) (sin ^ 4 x - cos ^ 4 x) = sin ^ 2 x - cos ^ 2 x #

#color (white) (sin ^ 4 x - cos ^ 4 x) = (1-cos ^ 2 x) - cos ^ 2 x #

#color (white) (sin ^ 4 x - cos ^ 4 x) = 1-2cos ^ 2 x #