Menjawab:
Centroid akan bergerak sekitar
Penjelasan:
Kami memiliki segitiga dengan simpul atau sudut di titik
Membiarkan
Hitung centroid
Centroid
Hitung centroid dari segitiga yang lebih besar (faktor skala = 5)
Membiarkan
persamaan kerja:
pecahkan untuk
pecahkan untuk
Hitung sekarang jarak dari centroid O (2/3, 5/3) ke centroid O 'baru (34/3, -47/3).
Tuhan memberkati …. Semoga penjelasannya bermanfaat..
Dari 200 anak-anak, 100 memiliki T-Rex, 70 memiliki iPads dan 140 memiliki ponsel. 40 dari mereka memiliki keduanya, T-Rex dan iPad, 30 memiliki keduanya, iPad dan ponsel dan 60 memiliki keduanya, T-Rex dan ponsel dan 10 memiliki ketiganya. Berapa banyak anak yang tidak memiliki ketiganya?
10 tidak memiliki ketiganya. 10 siswa memiliki ketiganya. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Dari 40 siswa yang memiliki T-Rex dan iPad, 10 siswa juga memiliki ponsel (mereka memiliki ketiganya). Jadi 30 siswa memiliki T-Rex dan iPad tetapi tidak semuanya.Dari 30 siswa yang memiliki iPad dan ponsel, 10 siswa memiliki ketiganya. Jadi 20 siswa memiliki iPad dan ponsel tetapi tidak ketiganya. Dari 60 siswa yang memiliki T-Rex dan ponsel, 10 siswa memiliki ketiganya. Jadi 50 siswa memiliki T-Rex dan ponsel tetapi tidak ketiganya. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Dari 100 siswa yang memiliki T-Rex, 10 memiliki ketiga , 30 jug
Segmen garis memiliki titik akhir di (a, b) dan (c, d). Segmen garis dilebarkan oleh faktor r di sekitar (p, q). Apa titik akhir dan panjang baru dari segmen garis?
(a, b) hingga ((1-r) p + ra, (1-r) q + rb), (c, d) hingga ((1-r) p + rc, (1-r) q + rd), panjang baru l = r sqrt {(ac) ^ 2 + (bd) ^ 2}. Saya punya teori semua pertanyaan ini ada di sini sehingga ada sesuatu yang harus dilakukan pemula. Saya akan melakukan kasus umum di sini dan melihat apa yang terjadi. Kami menerjemahkan bidang sehingga titik dilasi P memetakan ke titik asal. Kemudian pelebaran skala koordinat dengan faktor r. Lalu kita terjemahkan bidangnya kembali: A '= r (A - P) + P = (1-r) P + r A Itulah persamaan parametrik untuk garis antara P dan A, dengan r = 0 memberi P, r = 1 memberi A, dan r = r memberikan A
Titik A di (-2, -8) dan titik B di (-5, 3). Titik A diputar (3pi) / 2 searah jarum jam tentang asal. Berapa koordinat baru dari titik A dan seberapa jauh jarak antara titik A dan B berubah?
Biarkan koordinat kutub awal A, (r, theta) Diberikan koordinat Cartesian Awal A, (x_1 = -2, y_1 = -8) Jadi kita dapat menulis (x_1 = -2 = rcosthetaandy_1 = -8 = rsintheta) Setelah 3pi / 2 rotasi searah jarum jam koordinat baru A menjadi x_2 = rcos (-3pi / 2 + theta) = rcos (3pi / 2-theta) = - rsintheta = - (- 8) = 8 y_2 = rsin (-3pi / 2 + theta ) = - rsin (3pi / 2-theta) = rcostheta = -2 Jarak awal A dari B (-5,3) d_1 = sqrt (3 ^ 2 + 11 ^ 2) = jarak akhir sqrt130 antara posisi baru A ( 8, -2) dan B (-5,3) d_2 = sqrt (13 ^ 2 + 5 ^ 2) = sqrt194 Jadi Perbedaan = sqrt194-sqrt130 juga lihat tautan http://socratic.org/questions/