Menjawab:
Penjelasan:
Memiliki istilah urutan pertama
Kami menyadari itu
Kami juga punya:
Dari atas kita dapat menyadari bahwa setiap istilah adalah jumlah dari sebelumnya
istilah dan 2 * (koefisien urutan ditambahkan ke 1) dan 1
Jadi istilah ke-n adalah:
Istilah pertama dan kedua dari urutan geometri masing-masing adalah pertama dan ketiga dari urutan linear. Istilah keempat dari urutan linear adalah 10 dan jumlah dari lima istilah pertama adalah 60. Menemukan lima istilah pertama dari urutan linear?
{16, 14, 12, 10, 8} Urutan geometri tipikal dapat direpresentasikan sebagai c_0a, c_0a ^ 2, cdots, c_0a ^ k dan deret aritmatika khas seperti c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Memanggil c_0 a sebagai elemen pertama untuk deret geometri yang kita miliki {(c_0 a ^ 2 = c_0a + 2Delta -> "GS pertama dan kedua adalah yang pertama dan ketiga dari LS"), (c_0a + 3Delta = 10- > "Istilah keempat dari urutan linear adalah 10"), (5c_0a + 10Delta = 60 -> "Jumlah dari lima istilah pertama adalah 60"):} Memecahkan untuk c_0, a, Delta yang kita peroleh c_0 = 64/3 , a = 3/4, Delta
Rumus untuk menemukan luas kotak adalah A = s ^ 2. Bagaimana Anda mengubah rumus ini untuk menemukan rumus untuk panjang sisi persegi dengan luas A?
S = sqrtA Gunakan rumus yang sama dan ubah subjek menjadi s. Dengan kata lain mengisolasi s. Biasanya prosesnya adalah sebagai berikut: Mulailah dengan mengetahui panjang sisi. "side" rarr "kuadratkan sisi" rarr "Area" Lakukan kebalikannya: baca dari kanan ke kiri "side" larr "temukan akar kuadrat" larr "Area" Dalam Matematika: s ^ 2 = A s = sqrtA
Ketika polinomial memiliki empat istilah dan Anda tidak dapat memfaktorkan sesuatu dari semua istilah, atur ulang polinomial sehingga Anda dapat memfaktorkan dua istilah sekaligus. Kemudian tuliskan dua binomial yang akhirnya Anda miliki. (4ab + 8b) - (3a + 6)?
(a + 2) (4b-3) "langkah pertama adalah menghapus tanda kurung" rArr (4ab + 8b) (merah) (- 1) (3a + 6) = 4ab + 8b-3a-6 "sekarang memfaktorkan istilah dengan 'mengelompokkan' mereka "warna (merah) (4b) (a + 2) warna (merah) (- 3) (a + 2)" mengambil "(a + 2)" sebagai faktor umum dari masing-masing kelompok "= (a + 2) (warna (merah) (4b-3)) rR (4ab + 8b) - (3a + 6) = (a + 2) (4b-3) warna (biru)" Sebagai tanda centang " (a + 2) (4b-3) larr "ekspansi menggunakan FOIL" = 4ab-3a + 8b-6larr "dibandingkan dengan ekspansi di atas"