Menjawab:
Atau
Atau
Penjelasan:
Pertama, kita perlu menemukan kemiringan persamaan. Kemiringan dapat ditemukan dengan menggunakan rumus:
Dimana
Mengganti nilai dari titik-titik dalam masalah memberi:
Selanjutnya, kita bisa menggunakan rumus titik-kemiringan untuk menemukan persamaan untuk garis. Rumus titik-kemiringan menyatakan:
Dimana
Kami juga dapat mengganti kemiringan yang kami perhitungkan dan yang pertama dari pemberian masalah:
Atau, kita bisa menyelesaikannya
Dimana
Susu dan krim dicampur bersama untuk resep. Volume total campuran adalah 1 gelas. Jika susu mengandung 2% lemak, krim mengandung 18% lemak, dan campuran mengandung 6% lemak, berapa banyak krim dalam campuran?
Dalam campuran krim mengandung 25%. Biarkan volume campuran (6% lemak) dalam cangkir adalah 100cc x cc menjadi volume krim (18% lemak) dalam campuran. :. (100-x) cc menjadi volume susu (2% lemak) dalam campuran. x * 0,18 + (100-x) * 0,02 = 100 * 0,06 atau 0,18x-0,02x = 6-2 atau 0,16x = 4 atau x = 25 cc = 25% [Ans]
Apa persamaan garis yang melewati titik asal dan tegak lurus terhadap garis yang melewati titik-titik berikut: (3,7), (5,8)?
Y = -2x Pertama-tama, kita perlu menemukan gradien dari garis yang melewati (3,7) dan (5,8) "gradient" = (8-7) / (5-3) "gradient" = 1 / 2 Sekarang karena baris baru PERPENDICULAR ke garis yang melewati 2 titik, kita dapat menggunakan persamaan ini m_1m_2 = -1 di mana gradien dari dua baris yang berbeda ketika dikalikan harus sama dengan -1 jika garis-garis tersebut saling tegak lurus satu sama lain yaitu di sudut kanan. karenanya, baris baru Anda akan memiliki gradien 1 / 2m_2 = -1 m_2 = -2 Sekarang, kita dapat menggunakan rumus titik gradien untuk menemukan persamaan Anda dari garis y-0 = -2 (x-0) y =
Apa persamaan garis yang melewati titik perpotongan garis y = x dan x + y = 6 dan yang tegak lurus terhadap garis dengan persamaan 3x + 6y = 12?
Barisnya adalah y = 2x-3. Pertama, temukan titik persimpangan y = x dan x + y = 6 menggunakan sistem persamaan: y + x = 6 => y = 6-xy = x => 6-x = x => 6 = 2x => x = 3 dan karena y = x: => y = 3 Titik persimpangan garis adalah (3,3). Sekarang kita perlu menemukan garis yang melewati titik (3,3) dan tegak lurus dengan garis 3x + 6y = 12. Untuk menemukan kemiringan garis 3x + 6y = 12, konversikan ke bentuk garis miring: 3x + 6y = 12 6y = -3x + 12 y = -1 / 2x + 2 Jadi kemiringannya -1/2. Kemiringan garis tegak lurus adalah kebalikannya, sehingga berarti kemiringan garis yang kami coba temukan adalah - (- 2/1) a