Untuk masalah ini kita harus menggunakan Teorema Pythagoras.
dimana
Segitiga A memiliki sisi panjang 12, 1 4, dan 11. Segitiga B mirip dengan segitiga A dan memiliki sisi panjang 4. Berapa panjang yang mungkin dari dua sisi lain segitiga B?
Dua sisi lainnya adalah: 1) 14/3 dan 11/3 atau 2) 24/7 dan 22/7 atau 3) 48/11 dan 56/11 Karena B dan A serupa, sisi mereka berada dalam kemungkinan rasio berikut: 4/12 atau 4/14 atau 4/11 1) rasio = 4/12 = 1/3: dua sisi A lainnya adalah 14 * 1/3 = 14/3 dan 11 * 1/3 = 11/3 2 ) rasio = 4/14 = 2/7: dua sisi lainnya adalah 12 * 2/7 = 24/7 dan 11 * 2/7 = 22/7 3) rasio = 4/11: dua sisi lainnya adalah 12 * 4/11 = 48/11 dan 14 * 4/11 = 56/11
Segitiga A memiliki sisi panjang 12, 1 4, dan 11. Segitiga B mirip dengan segitiga A dan memiliki sisi panjang 9. Berapa panjang yang mungkin dari dua sisi lain segitiga B?
Panjang yang mungkin dari kedua sisi lainnya adalah Kasus 1: 10.5, 8.25 Kasus 2: 7.7143, 7.0714 Kasus 3: 9.8182, 11.4545 Segitiga A & B serupa. Kasus (1): .9 / 12 = b / 14 = c / 11 b = (9 * 14) / 12 = 10.5 c = (9 * 11) / 12 = 8.25 Panjang yang mungkin dari dua sisi lainnya dari segitiga B adalah 9 , 10.5, 8.25 Kasus (2): .9 / 14 = b / 12 = c / 11 b = (9 * 12) /14=7.7143 c = (9 * 11) /14=7.0714 Kemungkinan panjang dari dua sisi lainnya dari triangle B adalah 9, 7.7143, 7.0714 Kasus (3): .9 / 11 = b / 12 = c / 14 b = (9 * 12) /11=9.8182 c = (9 * 14) /11=11.4545 Kemungkinan panjang dua sisi lain dari segitiga B adalah 8,
Segitiga A memiliki sisi panjang 12, 16, dan 8. Segitiga B mirip dengan segitiga A dan memiliki sisi dengan panjang 16. Berapa panjang yang mungkin dari dua sisi lain segitiga B?
Dua sisi lain dari b dapat berupa warna (hitam) ({21 1/3, 10 2/3}) atau warna (hitam) ({12,8}) atau warna (hitam) ({24,32}) " , warna (biru) (12), "