Menjawab:
Baik domain dan jangkauannya adalah: semua bilangan real kecuali nol.
Penjelasan:
Domain adalah semua nilai-x yang mungkin yang dapat dicolokkan dan kisaran adalah semua nilai-y yang mungkin yang bisa dijadikan keluaran.
Jika kita pasang nol untuk
Dengan demikian domain adalah semua bilangan real kecuali nol.
Rentang lebih mudah dilihat pada grafik:
grafik {1 / x -10, 10, -5, 5}
Karena fungsi naik selamanya dan turun selamanya secara vertikal, kita dapat mengatakan bahwa rentangnya juga semua bilangan real kecuali nol.
Grafik y = g (x) diberikan di bawah ini. Buat sketsa grafik yang akurat dari y = 2 / 3g (x) +1 pada set sumbu yang sama. Beri label sumbu dan setidaknya 4 poin pada grafik baru Anda. Berikan domain dan rentang fungsi asli dan yang ditransformasikan?
Silakan lihat penjelasan di bawah ini. Sebelum: y = g (x) "domain" adalah x dalam [-3,5] "rentang" adalah y dalam [0,4.5] Setelah: y = 2 / 3g (x) +1 "domain" adalah x dalam [ -3,5] "range" is y in [1,4] Berikut adalah 4 poin: (1) Sebelum: x = -3, =>, y = g (x) = g (-3) = 0 Setelah : y = 2 / 3g (x) + 1 = 2/3 * 0 + 1 = 1 Titik baru adalah (-3,1) (2) Sebelum: x = 0, =>, y = g (x) = g (0) = 4,5 Setelah: y = 2 / 3g (x) + 1 = 2/3 * 4.5 + 1 = 4 Titik baru adalah (0,4) (3) Sebelum: x = 3, =>, y = g (x) = g (3) = 0 Setelah: y = 2 / 3g (x) + 1 = 2/3 * 0 + 1 = 1 Titik baru adalah (3,1)
Apa domain dan rentang 3x-2 / 5x + 1 dan domain serta rentang invers dari fungsi?
Domain adalah semua real kecuali -1/5 yang merupakan rentang kebalikannya. Rentang adalah semua real kecuali 3/5 yang merupakan domain dari invers. f (x) = (3x-2) / (5x + 1) didefinisikan dan nilai riil untuk semua x kecuali -1/5, sehingga itu adalah domain f dan rentang f ^ -1 Pengaturan y = (3x -2) / (5x + 1) dan penyelesaian untuk x menghasilkan 5xy + y = 3x-2, jadi 5xy-3x = -y-2, dan karena itu (5y-3) x = -y-2, jadi, akhirnya x = (- y-2) / (5y-3). Kami melihat bahwa y! = 3/5. Jadi kisaran f adalah semua real kecuali 3/5. Ini juga domain dari f ^ -1.
Jika f (x) = 3x ^ 2 dan g (x) = (x-9) / (x + 1), dan x! = - 1, lalu apa yang akan f (g (x)) sama? g (f (x))? f ^ -1 (x)? Apa yang akan menjadi domain, rentang, dan nol untuk f (x)? Apa yang akan menjadi domain, rentang, dan nol untuk g (x)?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = root () (x / 3) D_f = {x dalam RR}, R_f = {f (x) dalam RR; f (x)> = 0} D_g = {x dalam RR; x! = - 1}, R_g = {g (x) dalam RR; g (x)! = 1}