Menjawab:
Penjelasan:
Bentuk vertex dari parabola dapat dinyatakan sebagai
atau
Dimana
Rumus jaraknya adalah
Mari kita panggil
Mengalikan lintas memberi
Karena itu, bentuk simpul terakhir,
Apa persamaan parabola dengan fokus di (-2, 6) dan simpul di (-2, 9)? Bagaimana jika fokus dan vertex diaktifkan?
Persamaannya adalah y = -1 / 12 (x + 2) ^ 2 + 9. Persamaan lainnya adalah y = 1/12 (x + 2) * 2 + 6 Fokusnya adalah F = (- 2,6) dan verteksnya adalah V = (- 2,9) Oleh karena itu, directrix adalah y = 12 sebagai vertex adalah titik tengah dari fokus dan directrix (y + 6) / 2 = 9 =>, y + 6 = 18 =>, y = 12 Setiap titik (x, y) pada parabola berjarak sama dari fokus dan directrix y-12 = sqrt ((x + 2) ^ 2 + (y-6) ^ 2) (y-12) ^ 2 = (x + 2) ^ 2 + (y-6) ^ 2 y ^ 2 -24y + 144 = (x + 2) ^ 2 + y ^ 2-12y + 36 12y = - (x + 2) ^ 2 + 108 y = -1 / 12 (x + 2) ^ 2 + 9 grafik {( y + 1/12 (x + 2) ^ 2-9) (y-12) = 0 [-32,47, 32,45, -16,23, 1
Apa bentuk standar parabola dengan simpul di (16, -2) dan fokus di (16,7)?
(x-16) ^ 2 = 36 (y + 2). Kita tahu bahwa Persamaan Standar (persamaan) Parabola dengan Vertex pada Asalnya (0,0) dan Fokus pada (0, b) adalah, x ^ 2 = 4dengan ........... .....................................(bintang). Sekarang, jika kita menggeser Origin ke pt. (h, k), hubungan btwn. koordinat lama (co-ords.) (x, y) dan co-ords baru. (X, Y) diberikan oleh, x = X + h, y = Y + k ............................ (ast ). Mari kita menggeser Asal ke titik (pt.) (16, -2). Rumus Konversi adalah, x = X + 16, dan, y = Y + (- 2) = Y-2 ............. (ast ^ 1). Oleh karena itu, dalam Sistem (X, Y), Vertex adalah (0,0) dan Fokus, (0,9). O
Apa bentuk simpul dari persamaan parabola dengan fokus di (1,20) dan directrix dari y = 23?
Y = x ^ 2 / -6 + x / 3 + 64/3 Diberikan - Fokus (1,20) directrix y = 23 Titik puncak parabola adalah di kuadran pertama. Directrix-nya berada di atas puncak. Karenanya parabola terbuka ke bawah. Bentuk umum dari persamaan adalah - (xh) ^ 2 = - 4xxaxx (yk) Di mana - h = 1 [koordinat-X dari titik] k = 21,5 [Koordinat-Y dari titik] Kemudian - (x-1 ) ^ 2 = -4xx1.5xx (y-21.5) x ^ 2-2x + 1 = -6y + 129 -6y + 129 = x ^ 2-2x + 1 -6y = x ^ 2-2x + 1-129 y = x ^ 2 / -6 + x / 3 + 128/6 y = x ^ 2 / -6 + x / 3 + 64/3