Menjawab:
Penjelasan:
Jelas, pertanyaan ini adalah tentang a reguler 6-sisi poligon. Itu berarti bahwa semua sisi sama (masing-masing 4 cm) dan semua sudut dalam sama satu sama lain. Itu apa reguler artinya, tanpa kata ini masalahnya tidak sepenuhnya ditentukan.
Setiap reguler poligon memiliki pusat simetri rotasi. Jika kita putar di sekitar pusat ini oleh
Dalam hal a reguler segi enam
Dalam segitiga sama sisi dengan sisi
Karena itu,
Luas segitiga tersebut adalah
Dari sinilah segi segi enam biasa dengan sisi
Untuk
Keliling segitiga adalah 29 mm. Panjang sisi pertama adalah dua kali panjang sisi kedua. Panjang sisi ketiga adalah 5 lebih dari panjang sisi kedua. Bagaimana Anda menemukan panjang sisi segitiga?
S_1 = 12 s_2 = 6 s_3 = 11 Perimeter segitiga adalah jumlah dari panjang semua sisinya. Dalam hal ini, diberikan bahwa perimeter adalah 29mm. Jadi untuk kasus ini: s_1 + s_2 + s_3 = 29 Jadi untuk panjang sisi, kita menerjemahkan pernyataan dalam bentuk persamaan yang diberikan. "Panjang sisi pertama adalah dua kali panjang sisi kedua" Untuk menyelesaikan ini, kami menetapkan variabel acak untuk s_1 atau s_2. Untuk contoh ini, saya akan membiarkan x menjadi panjang sisi ke-2 untuk menghindari pecahan dalam persamaan saya. jadi kita tahu bahwa: s_1 = 2s_2 tetapi karena kita membiarkan s_2 menjadi x, kita sekarang ta
Segitiga A memiliki luas 12 dan dua sisi dengan panjang 5 dan 7. Segitiga B mirip dengan segitiga A dan memiliki sisi dengan panjang 19. Berapa luas maksimum dan minimum yang mungkin dari segitiga B?
Area Maksimum = 187.947 "" unit kuadrat Area Minimum = 88.4082 "" unit kuadrat Segitiga A dan B serupa. Dengan metode perbandingan dan proporsi solusi, segitiga B memiliki tiga kemungkinan segitiga. Untuk Segitiga A: sisinya x = 7, y = 5, z = 4.800941906394, Sudut Z = 43.29180759327 ^ @ Sudut Z antara sisi x dan y diperoleh dengan menggunakan rumus untuk luas segitiga Area = 1/2 * x * y * sin Z 12 = 1/2 * 7 * 5 * sin ZZ = 43.29180759327 ^ @ Tiga kemungkinan segitiga untuk Segitiga B: sisi adalah Segitiga 1. x_1 = 19, y_1 = 95/7, z_1 = 13.031128031641, Angle Z_1 = 43.29180759327 ^ @ Segitiga 2. x_2 = 133
Segitiga A memiliki luas 12 dan dua sisi dengan panjang 6 dan 9. Segitiga B mirip dengan segitiga A dan memiliki sisi dengan panjang 15. Berapa luas maksimum dan minimum yang mungkin dari segitiga B?
Delta s dan B serupa. Untuk mendapatkan area maksimum Delta B, sisi 15 dari Delta B harus sesuai dengan sisi 6 dari Delta A. Sisi berada dalam rasio 15: 6 Oleh karena itu area akan berada dalam rasio 15 ^ 2: 6 ^ 2 = 225: 36 Area Maksimum dari segitiga B = (12 * 225) / 36 = 75 Demikian pula untuk mendapatkan area minimum, sisi 9 dari Delta A akan sesuai dengan sisi 15 dari Delta B. Sisi-sisinya berada dalam rasio 15: 9 dan area 225: 81 Luas minimum Delta B = (12 * 225) / 81 = 33.3333