Menjawab:
Lihat proses solusi di bawah ini:
Penjelasan:
Kemiringan dapat ditemukan dengan menggunakan rumus:
Dimana
Mengganti nilai dari titik-titik dalam masalah memberi:
Persamaan garis adalah 2x + 3y - 7 = 0, cari: - (1) kemiringan garis (2) persamaan garis tegak lurus dengan garis yang diberikan dan melewati persimpangan garis x-y + 2 = 0 dan 3x + y-10 = 0?
-3x + 2y-2 = 0 warna (putih) ("ddd") -> warna (putih) ("ddd") y = 3 / 2x + 1 Bagian pertama dalam banyak detail menunjukkan bagaimana prinsip pertama bekerja. Setelah terbiasa dengan ini dan menggunakan cara pintas Anda akan menggunakan lebih sedikit garis. warna (biru) ("Tentukan intersep dari persamaan awal") x-y + 2 = 0 "" ....... Persamaan (1) 3x + y-10 = 0 "" .... Persamaan ( 2) Kurangi x dari kedua sisi Persamaan (1) beri -y + 2 = -x Kalikan kedua sisi dengan (-1) + y-2 = + x "" .......... Persamaan (1_a ) Menggunakan Eqn (1_a) menggantikan x dalam Eqn (2
Tulis bentuk persamaan titik-kemiringan dengan kemiringan yang diberikan yang melewati titik yang ditunjukkan. A.) garis dengan kemiringan -4 yang melewati (5,4). dan juga B.) garis dengan kemiringan 2 yang melewati (-1, -2). tolong bantu, ini membingungkan?
Y-4 = -4 (x-5) "dan" y + 2 = 2 (x + 1)> "persamaan garis dalam" color (blue) "form-slope form" adalah. • warna (putih) (x) y-y_1 = m (x-x_1) "di mana m adalah kemiringan dan" (x_1, y_1) "titik pada garis" (A) "diberikan" m = -4 "dan "(x_1, y_1) = (5,4)" menggantikan nilai-nilai ini ke dalam persamaan menghasilkan "y-4 = -4 (x-5) larrcolor (biru)" dalam bentuk titik-lereng "(B)" diberikan "m = 2 "dan" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor (biru) " dalam bentuk titi
Tunjukkan bahwa untuk semua nilai m garis lurus x (2m-3) + y (3-m) + 1-2m = 0 lulus melalui titik perpotongan dari dua garis tetap. Untuk nilai m apa garis garis dibagi sudut antara dua garis tetap?
M = 2 dan m = 0 Memecahkan sistem persamaan x (2 m - 3) + y (3 - m) + 1 - 2 m = 0 x (2 n - 3) + y (3 - n) + 1 - 2 n = 0 untuk x, y kita mendapatkan x = 5/3, y = 4/3 Pembagian diperoleh dengan membuat (kemiringan lurus) (2m-3) / (3-m) = 1-> m = 2 dan ( 2m-3) / (3-m) = -1-> m = 0