Menjawab:
Saya berasumsi Anda menginginkannya dalam bentuk slope-intercept.
Penjelasan:
Bentuk mencegat lereng ditulis sebagai y = mx + b, di mana m adalah kemiringan, b adalah intersep y, dan x dan y tetap ditulis sebagai x dan y dalam persamaan terakhir.
Karena kami sudah memiliki kemiringan, persamaan kami sekarang:
y = (- 4/5) x + b (karena m merupakan kemiringan jadi kami pasang nilai kemiringan untuk m).
Sekarang kita harus menemukan intersepsi y. Untuk melakukan ini, kita cukup menggunakan titik yang diberikan, dengan menghubungkan 4 untuk x dan 2 untuk y. Sepertinya:
2 = (4/5) (4) + b
2 = 16/5 + b
b = -4 / 5
Sekarang kita pasang -4/5 untuk b dan -4/5 untuk m dan kita dapatkan persamaan terakhir:
y = (- 4/5) x-4/5
Persamaan garis adalah 2x + 3y - 7 = 0, cari: - (1) kemiringan garis (2) persamaan garis tegak lurus dengan garis yang diberikan dan melewati persimpangan garis x-y + 2 = 0 dan 3x + y-10 = 0?
-3x + 2y-2 = 0 warna (putih) ("ddd") -> warna (putih) ("ddd") y = 3 / 2x + 1 Bagian pertama dalam banyak detail menunjukkan bagaimana prinsip pertama bekerja. Setelah terbiasa dengan ini dan menggunakan cara pintas Anda akan menggunakan lebih sedikit garis. warna (biru) ("Tentukan intersep dari persamaan awal") x-y + 2 = 0 "" ....... Persamaan (1) 3x + y-10 = 0 "" .... Persamaan ( 2) Kurangi x dari kedua sisi Persamaan (1) beri -y + 2 = -x Kalikan kedua sisi dengan (-1) + y-2 = + x "" .......... Persamaan (1_a ) Menggunakan Eqn (1_a) menggantikan x dalam Eqn (2
Apa persamaan garis yang melewati titik perpotongan garis y = x dan x + y = 6 dan yang tegak lurus terhadap garis dengan persamaan 3x + 6y = 12?
Barisnya adalah y = 2x-3. Pertama, temukan titik persimpangan y = x dan x + y = 6 menggunakan sistem persamaan: y + x = 6 => y = 6-xy = x => 6-x = x => 6 = 2x => x = 3 dan karena y = x: => y = 3 Titik persimpangan garis adalah (3,3). Sekarang kita perlu menemukan garis yang melewati titik (3,3) dan tegak lurus dengan garis 3x + 6y = 12. Untuk menemukan kemiringan garis 3x + 6y = 12, konversikan ke bentuk garis miring: 3x + 6y = 12 6y = -3x + 12 y = -1 / 2x + 2 Jadi kemiringannya -1/2. Kemiringan garis tegak lurus adalah kebalikannya, sehingga berarti kemiringan garis yang kami coba temukan adalah - (- 2/1) a
Tulis bentuk persamaan titik-kemiringan dengan kemiringan yang diberikan yang melewati titik yang ditunjukkan. A.) garis dengan kemiringan -4 yang melewati (5,4). dan juga B.) garis dengan kemiringan 2 yang melewati (-1, -2). tolong bantu, ini membingungkan?
Y-4 = -4 (x-5) "dan" y + 2 = 2 (x + 1)> "persamaan garis dalam" color (blue) "form-slope form" adalah. • warna (putih) (x) y-y_1 = m (x-x_1) "di mana m adalah kemiringan dan" (x_1, y_1) "titik pada garis" (A) "diberikan" m = -4 "dan "(x_1, y_1) = (5,4)" menggantikan nilai-nilai ini ke dalam persamaan menghasilkan "y-4 = -4 (x-5) larrcolor (biru)" dalam bentuk titik-lereng "(B)" diberikan "m = 2 "dan" (x_1, y_1) = (- 1, -2) y - (- 2)) = 2 (x - (- 1)) rArry + 2 = 2 (x + 1) larrcolor (biru) " dalam bentuk titi