Persamaan parabola: y = kapak ^ 2 + bx + c. Temukan a, b, dan c.
x sumbu simetri:
Menulis bahwa grafik lewat pada titik (1, 0) dan titik (4, -3):
(1) 0 = a + b + c -> c = - a - b = - a + 6a = 5a
(2) -3 = 16a + 4b + c -> -3 = 16a - 24a + 5a = -3a -> a = 1
b = -6a = -6; dan c = 5a = 5
Periksa dengan x = 1: -> y = 1 - 6 + 5 = 0. OK
Grafik garis l pada bidang xy melewati titik (2,5) dan (4,11). Grafik garis m memiliki kemiringan -2 dan x-intersep 2. Jika titik (x, y) adalah titik perpotongan garis l dan m, berapakah nilai y?
Y = 2 Langkah 1: Tentukan persamaan garis l Kita miliki dengan rumus kemiringan m = (y_2 - y_1) / (x_2 - x_1) = (11-5) / (4-2) = 3 Sekarang dengan bentuk slope per titik persamaannya adalah y - y_1 = m (x - x_1) y -11 = 3 (x-4) y = 3x - 12 + 11 y = 3x - 1 Langkah 2: Tentukan persamaan garis m m-intersep x akan selalu have y = 0. Oleh karena itu, titik yang diberikan adalah (2, 0). Dengan kemiringan, kita memiliki persamaan berikut. y - y_1 = m (x - x_1) y - 0 = -2 (x - 2) y = -2x + 4 Langkah 3: Tulis dan selesaikan sistem persamaan Kami ingin mencari solusi sistem {(y = 3x - 1), (y = -2x + 4):} Dengan substitusi: 3x - 1 =
Grafik y = g (x) diberikan di bawah ini. Buat sketsa grafik yang akurat dari y = 2 / 3g (x) +1 pada set sumbu yang sama. Beri label sumbu dan setidaknya 4 poin pada grafik baru Anda. Berikan domain dan rentang fungsi asli dan yang ditransformasikan?
Silakan lihat penjelasan di bawah ini. Sebelum: y = g (x) "domain" adalah x dalam [-3,5] "rentang" adalah y dalam [0,4.5] Setelah: y = 2 / 3g (x) +1 "domain" adalah x dalam [ -3,5] "range" is y in [1,4] Berikut adalah 4 poin: (1) Sebelum: x = -3, =>, y = g (x) = g (-3) = 0 Setelah : y = 2 / 3g (x) + 1 = 2/3 * 0 + 1 = 1 Titik baru adalah (-3,1) (2) Sebelum: x = 0, =>, y = g (x) = g (0) = 4,5 Setelah: y = 2 / 3g (x) + 1 = 2/3 * 4.5 + 1 = 4 Titik baru adalah (0,4) (3) Sebelum: x = 3, =>, y = g (x) = g (3) = 0 Setelah: y = 2 / 3g (x) + 1 = 2/3 * 0 + 1 = 1 Titik baru adalah (3,1)
Titik P terletak pada kuadran pertama pada grafik garis y = 7-3x. Dari titik P, garis tegak lurus ditarik ke sumbu x dan sumbu y. Berapa luas yang paling mungkin untuk persegi panjang yang terbentuk?
49/12 "sq.unit." Misalkan M dan N adalah kaki bot dari P (x, y) ke Sumbu X dan Sumbu Y, resp., Di mana, P dalam l = y = 7-3x, x> 0; y> 0 sub RR ^ 2 .... (ast) Jika O (0,0) adalah Origin, the, we have, M (x, 0), dan, N (0, y). Oleh karena itu, Area A dari Rectangle OMPN, diberikan, oleh, A = OM * PM = xy, "dan, menggunakan" (ast), A = x (7-3x). Jadi, A menyenangkan. dari x, jadi mari kita menulis, A (x) = x (7-3x) = 7x-3x ^ 2. Untuk A_ (maks), (i) A '(x) = 0, dan, (ii) A' '(x) <0. A '(x) = 0 rArr 7-6x = 0 rArr x = 7/6,> 0. Juga, A '' (x) = - 6, "yang sudah" &