Menjawab:
Saya tidak berpikir fungsi ini memiliki simpul (dianggap sebagai titik tertinggi atau terendah seperti dalam parabola).
Penjelasan:
Akar kuadrat, seperti ini, memiliki grafik yang terlihat seperti parabola setengah horisontal.
Jika yang Anda maksud adalah titik hipotetis parabola lengkap maka Anda memiliki koordinatnya
Grafiknya terlihat seperti ini:
grafik {sqrt (x + 2) -10, 10, -5, 5}
Seperti yang Anda lihat, Anda hanya memiliki setengah parabola!
Basis sebuah segitiga sama kaki terletak pada garis x-2y = 6, simpul yang berlawanan adalah (1,5), dan kemiringan satu sisi adalah 3. Bagaimana Anda menemukan koordinat dari simpul lainnya?
Dua simpul adalah (-2, -4) dan (10,2) Pertama mari kita temukan titik tengah pangkalan. Karena basis pada x-2y = 6, tegak lurus dari vertex (1,5) akan memiliki persamaan 2x + y = k dan ketika melewati (1,5), k = 2 * 1 + 5 = 7. Maka persamaan tegak lurus dari verteks ke basis adalah 2x + y = 7. Persimpangan x-2y = 6 dan 2x + y = 7 akan memberi kita titik tengah basis. Untuk ini, menyelesaikan persamaan ini (dengan meletakkan nilai x = 2y + 6 dalam persamaan kedua 2x + y = 7) memberi kita 2 (2y + 6) + y = 7 atau 4y + 12 + y = 7 atau 5y = -5 . Oleh karena itu, y = -1 dan menempatkan ini dalam x = 2y + 6, kita mendapatkan x =
Apa itu (sqrt (5+) sqrt (3)) / (sqrt (3+) sqrt (3+) sqrt (5)) - (sqrt (5-) sqrt (3)) / (sqrt (3+) sqrt (3-) sqrt (5))?
2/7 Kita ambil, A = (sqrt5 + sqrt3) / (sqrt3 + sqrt3 + sqrt5) - (sqrt5-sqrt3) / (sqrt3 + sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5) -sqrt3) / (2sqrt3-sqrt5) = (sqrt5 + sqrt3) / (2sqrt3 + sqrt5) - (sqrt5-sqrt3) / (2sqrt3-sqrt5) = ((sqrt5 + sqrt3) (2sqrt3-sqrt5) - (sqrt5-sqrt5) - (sqrt5-sqrt5) ) (2sqrt3 + sqrt5)) / ((2sqrt3 + sqrt5) (2sqrt3-sqrt5) = ((2sqrt15-5 + 2 * 3-sqrt15) - (2sqrt15 + 5-2 * 3-sqrt15)) / ((2sqrt3) ^ 2- (sqrt5) ^ 2) = (batal (2sqrt15) -5 + 2 * 3cancel (-sqrt15) - batalkan (2sqrt15) -5 + 2 * 3 + batal (sqrt15)) / (12-5) = ( -10 + 12) / 7 = 2/7 Perhatikan bahwa, jika dalam penyebutnya adala
Bagaimana Anda menyederhanakan (1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) div sqrt (a + 1) / ( (a-1) sqrt (a + 1) - (a + 1) sqrt (a-1)), a> 1?
Pemformatan matematika besar ...> warna (biru) (((1 / sqrt (a-1) + sqrt (a + 1)) / (1 / sqrt (a + 1) -1 / sqrt (a-1)) ) / (sqrt (a + 1) / ((a-1) sqrt (a + 1) - (a + 1) sqrt (a-1))) = warna (merah) (((1 / sqrt (a- 1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a-1)))) / (sqrt (a +1) / (sqrt (a-1) cdot sqrt (a-1) cdot sqrt (a + 1) -sqrt (a + 1) cdot sqrt (a + 1) sqrt (a-1))) = warna ( biru) (((1 / sqrt (a-1) + sqrt (a + 1)) / ((sqrt (a-1) -sqrt (a + 1)) / (sqrt (a + 1) cdot sqrt (a -1)))) / (sqrt (a + 1) / (sqrt (a + 1) cdot sqrt (a-1) (sqrt (a-1) -sqrt (a + 1))) = warna (merah) ((1 / sqrt (a-