Menjawab:
Dengan kuadrat
Penjelasan:
Kita tahu bahwa segitiga A memiliki sudut internal tetap dengan informasi yang diberikan. Saat ini kami hanya tertarik pada sudut antara panjang
Sudut itu ada dalam hubungan:
Karenanya:
Dengan sudut itu, kita sekarang dapat menemukan panjang lengan ketiga
Dari
Segitiga serupa akan memiliki rasio lengan diperpanjang atau dikontrak oleh rasio tetap. Jika panjang satu lengan berlipat ganda, lengan lainnya juga berlipat ganda. Untuk area segitiga yang serupa, jika panjang lengan berlipat ganda, area tersebut berukuran lebih besar dengan faktor 4.
Yang serupa
Oleh karena itu luas maksimum B adalah 54 dan area minimum adalah 15.36.
Segitiga A memiliki luas 12 dan dua sisi dengan panjang 5 dan 7. Segitiga B mirip dengan segitiga A dan memiliki sisi dengan panjang 19. Berapa luas maksimum dan minimum yang mungkin dari segitiga B?
Area Maksimum = 187.947 "" unit kuadrat Area Minimum = 88.4082 "" unit kuadrat Segitiga A dan B serupa. Dengan metode perbandingan dan proporsi solusi, segitiga B memiliki tiga kemungkinan segitiga. Untuk Segitiga A: sisinya x = 7, y = 5, z = 4.800941906394, Sudut Z = 43.29180759327 ^ @ Sudut Z antara sisi x dan y diperoleh dengan menggunakan rumus untuk luas segitiga Area = 1/2 * x * y * sin Z 12 = 1/2 * 7 * 5 * sin ZZ = 43.29180759327 ^ @ Tiga kemungkinan segitiga untuk Segitiga B: sisi adalah Segitiga 1. x_1 = 19, y_1 = 95/7, z_1 = 13.031128031641, Angle Z_1 = 43.29180759327 ^ @ Segitiga 2. x_2 = 133
Segitiga A memiliki luas 12 dan dua sisi dengan panjang 6 dan 9. Segitiga B mirip dengan segitiga A dan memiliki sisi dengan panjang 15. Berapa luas maksimum dan minimum yang mungkin dari segitiga B?
Delta s dan B serupa. Untuk mendapatkan area maksimum Delta B, sisi 15 dari Delta B harus sesuai dengan sisi 6 dari Delta A. Sisi berada dalam rasio 15: 6 Oleh karena itu area akan berada dalam rasio 15 ^ 2: 6 ^ 2 = 225: 36 Area Maksimum dari segitiga B = (12 * 225) / 36 = 75 Demikian pula untuk mendapatkan area minimum, sisi 9 dari Delta A akan sesuai dengan sisi 15 dari Delta B. Sisi-sisinya berada dalam rasio 15: 9 dan area 225: 81 Luas minimum Delta B = (12 * 225) / 81 = 33.3333
Segitiga A memiliki luas 12 dan dua sisi dengan panjang 7 dan 7. Segitiga B mirip dengan segitiga A dan memiliki sisi dengan panjang 19. Berapa luas maksimum dan minimum yang mungkin dari segitiga B?
Luas segitiga B = 88.4082 Karena segitiga A sama kaki, segitiga B juga sama kaki.Sisi Segitiga B & A berada dalam rasio 19: 7 Area akan berada dalam rasio 19 ^ 2: 7 ^ 2 = 361: 49:. Luas segitiga B = (12 * 361) / 49 = 88.4082