Domain adalah himpunan bilangan real R
Untuk rentang kami perhatikan itu
Karenanya kisarannya adalah himpunan
Menjawab:
Domain:
Jarak:
Penjelasan:
Domain, dalam kata-kata adalah x adalah bilangan real, dan jangkauannya adalah y
lebih besar dari atau sama dengan -2.
grafik-2 -10, 10, -5.21, 5.21
Nilai absolut adalah selalu angka positif, karena mereka mengekspresikan jarak angka dari nol, yang kelihatannya tidak berguna pada awalnya, tetapi mereka bagus dalam hal seperti kimia, atau fisika, di mana Anda ingin menghitung kesalahan persentase.
Semoga itu bisa membantu!
Apa domain dan rentang 3x-2 / 5x + 1 dan domain serta rentang invers dari fungsi?
Domain adalah semua real kecuali -1/5 yang merupakan rentang kebalikannya. Rentang adalah semua real kecuali 3/5 yang merupakan domain dari invers. f (x) = (3x-2) / (5x + 1) didefinisikan dan nilai riil untuk semua x kecuali -1/5, sehingga itu adalah domain f dan rentang f ^ -1 Pengaturan y = (3x -2) / (5x + 1) dan penyelesaian untuk x menghasilkan 5xy + y = 3x-2, jadi 5xy-3x = -y-2, dan karena itu (5y-3) x = -y-2, jadi, akhirnya x = (- y-2) / (5y-3). Kami melihat bahwa y! = 3/5. Jadi kisaran f adalah semua real kecuali 3/5. Ini juga domain dari f ^ -1.
Jika fungsi f (x) memiliki domain -2 <= x <= 8 dan rentang -4 <= y <= 6 dan fungsi g (x) didefinisikan oleh rumus g (x) = 5f ( 2x)) lalu apa domain dan jangkauan g?
Di bawah. Gunakan transformasi fungsi dasar untuk menemukan domain dan rentang baru. 5f (x) berarti bahwa fungsi tersebut diregangkan secara vertikal dengan faktor lima. Oleh karena itu, rentang baru akan span interval yang lima kali lebih besar daripada yang asli. Dalam kasus f (2x), peregangan horizontal dengan faktor setengah diterapkan pada fungsi. Oleh karena itu ekstremitas domain dibelah dua. Dan lagi!
Jika f (x) = 3x ^ 2 dan g (x) = (x-9) / (x + 1), dan x! = - 1, lalu apa yang akan f (g (x)) sama? g (f (x))? f ^ -1 (x)? Apa yang akan menjadi domain, rentang, dan nol untuk f (x)? Apa yang akan menjadi domain, rentang, dan nol untuk g (x)?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = root () (x / 3) D_f = {x dalam RR}, R_f = {f (x) dalam RR; f (x)> = 0} D_g = {x dalam RR; x! = - 1}, R_g = {g (x) dalam RR; g (x)! = 1}