Mari kita menangani bagian kedua terlebih dahulu:
nilai apa dari
Pertimbangkan dua kasus:
Kasus 1:
Kasus 2:
jika
dan karena itu harus dimasukkan
Perhatikan bahwa hasilnya akan sangat berbeda jika kondisinya telah
Satu cara untuk dipikirkan Bilangan real adalah menganggap mereka sebagai jarak, ukuran panjang yang sebanding.
Angka dapat dianggap sebagai koleksi set yang berkembang:
-
Bilangan alami (atau Menghitung angka): 1, 2, 3, 4, …
-
Bilangan alami dan Nol
-
Integer: Bilangan asli, Nol, dan versi negatif dari Bilangan alami ….- 4, -3, -2, -1, 0, 1, 2, 3, 4, ….
-
Bilangan rasional: Bilangan bulat ditambah semua nilai yang dapat dinyatakan sebagai rasio dua bilangan bulat (fraksi).
-
Bilangan real: Bilangan rasional ditambah bilangan irasional di mana bilangan irasional adalah nilai-nilai yang ada sebagai panjang tetapi tidak dapat dinyatakan sebagai pecahan (misalnya
#sqrt (2) # ). -
Bilangan kompleks: Bilangan real plus angka dengan komponen yang menyertakan
#sqrt (-1) # (Disebut angka imajiner).
Diskriminan persamaan kuadrat adalah -5. Jawaban mana yang menjelaskan jumlah dan jenis solusi persamaan: 1 solusi kompleks 2 solusi nyata 2 solusi kompleks 1 solusi nyata?
Persamaan kuadrat Anda memiliki 2 solusi kompleks. Diskriminan persamaan kuadrat hanya dapat memberi kita informasi tentang persamaan bentuk: y = ax ^ 2 + bx + c atau parabola. Karena derajat tertinggi dari polinomial ini adalah 2, ia harus memiliki tidak lebih dari 2 solusi. Diskriminan hanyalah barang-barang di bawah simbol akar kuadrat (+ -sqrt ("")), tetapi bukan simbol akar kuadrat itu sendiri. + -sqrt (b ^ 2-4ac) Jika diskriminan, b ^ 2-4ac, kurang dari nol (yaitu, angka negatif), maka Anda akan memiliki negatif di bawah simbol akar kuadrat. Nilai negatif di bawah akar kuadrat adalah solusi yang kompleks. S
Biarkan f (x) = x-1. 1) Pastikan f (x) tidak genap atau ganjil. 2) Dapatkah f (x) ditulis sebagai jumlah dari fungsi genap dan fungsi ganjil? a) Jika demikian, perlihatkan solusi. Apakah ada solusi lain? b) Jika tidak, buktikan bahwa itu tidak mungkin.
Biarkan f (x) = | x -1 |. Jika f genap, maka f (-x) akan sama dengan f (x) untuk semua x. Jika f aneh, maka f (-x) akan sama dengan -f (x) untuk semua x. Perhatikan bahwa untuk x = 1 f (1) = | 0 | = 0 f (-1) = | -2 | = 2 Karena 0 tidak sama dengan 2 atau -2, f tidak genap atau ganjil. Mungkinkah f ditulis sebagai g (x) + h (x), di mana g genap dan h ganjil? Jika itu benar maka g (x) + h (x) = | x - 1 |. Sebut pernyataan ini 1. Ganti x dengan -x. g (-x) + h (-x) = | -x - 1 | Karena g adalah genap dan h adalah ganjil, kita memiliki: g (x) - h (x) = | -x - 1 | Sebut pernyataan ini 2. Menyatukan pernyataan 1 dan 2, kita meliha
Dari 200 anak-anak, 100 memiliki T-Rex, 70 memiliki iPads dan 140 memiliki ponsel. 40 dari mereka memiliki keduanya, T-Rex dan iPad, 30 memiliki keduanya, iPad dan ponsel dan 60 memiliki keduanya, T-Rex dan ponsel dan 10 memiliki ketiganya. Berapa banyak anak yang tidak memiliki ketiganya?
10 tidak memiliki ketiganya. 10 siswa memiliki ketiganya. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Dari 40 siswa yang memiliki T-Rex dan iPad, 10 siswa juga memiliki ponsel (mereka memiliki ketiganya). Jadi 30 siswa memiliki T-Rex dan iPad tetapi tidak semuanya.Dari 30 siswa yang memiliki iPad dan ponsel, 10 siswa memiliki ketiganya. Jadi 20 siswa memiliki iPad dan ponsel tetapi tidak ketiganya. Dari 60 siswa yang memiliki T-Rex dan ponsel, 10 siswa memiliki ketiganya. Jadi 50 siswa memiliki T-Rex dan ponsel tetapi tidak ketiganya. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Dari 100 siswa yang memiliki T-Rex, 10 memiliki ketiga , 30 jug