Menjawab:
Penjelasan:
Gunakan aturan untuk perbedaan kuadrat.
Persamaan ini akan benar jika salah satu (4x-9) atau (4x + 9) adalah 0.
Atau
Menjawab:
Penjelasan:
Ingatlah bahwa ini adalah perbedaan kuadrat yang menjadi faktornya
Kedua istilah kami adalah kotak yang sempurna, di mana kami
Kita dapat mengatur kedua faktor sama dengan nol untuk mendapatkan
Semoga ini membantu!
Bagaimana Anda menyelesaikan 3k ^ 2 + 72k = 33k dengan memfaktorkan?
X = 0 atau c = -13 3k ^ 2 + 72k = 33k 3k ^ 2 + 39k = 0 3x (x + 13) = 0 karena itu x = 0 atau c = -13
Ketika polinomial memiliki empat istilah dan Anda tidak dapat memfaktorkan sesuatu dari semua istilah, atur ulang polinomial sehingga Anda dapat memfaktorkan dua istilah sekaligus. Kemudian tuliskan dua binomial yang akhirnya Anda miliki. (4ab + 8b) - (3a + 6)?
(a + 2) (4b-3) "langkah pertama adalah menghapus tanda kurung" rArr (4ab + 8b) (merah) (- 1) (3a + 6) = 4ab + 8b-3a-6 "sekarang memfaktorkan istilah dengan 'mengelompokkan' mereka "warna (merah) (4b) (a + 2) warna (merah) (- 3) (a + 2)" mengambil "(a + 2)" sebagai faktor umum dari masing-masing kelompok "= (a + 2) (warna (merah) (4b-3)) rR (4ab + 8b) - (3a + 6) = (a + 2) (4b-3) warna (biru)" Sebagai tanda centang " (a + 2) (4b-3) larr "ekspansi menggunakan FOIL" = 4ab-3a + 8b-6larr "dibandingkan dengan ekspansi di atas"
Ketika polinomial memiliki empat istilah dan Anda tidak dapat memfaktorkan sesuatu dari semua istilah, atur ulang polinomial sehingga Anda dapat memfaktorkan dua istilah sekaligus. Kemudian tulis dua binomial yang Anda miliki. (6y ^ 2-4y) + (3y-2)?
(3y-2) (2y + 1) Mari kita mulai dengan ekspresi: (6y ^ 2-4y) + (3y-2) Perhatikan bahwa saya dapat memperhitungkan 2y dari istilah kiri dan itu akan meninggalkan 3y-2 di dalam bracket: 2y (3y-2) + (3y-2) Ingatlah bahwa saya dapat mengalikan apa pun dengan 1 dan mendapatkan hal yang sama. Jadi saya dapat mengatakan bahwa ada 1 di depan istilah yang tepat: 2y (3y-2) +1 (3y-2) Apa yang sekarang dapat saya lakukan adalah faktor 3y-2 dari istilah kanan dan kiri: (3y -2) (2th + 1) Dan sekarang ungkapan itu diperhitungkan!