Menjawab:
Saya akan mengatakan domainnya
Yang lain mengizinkan
Penjelasan:
Jarak.
Saya tidak tahu cara menemukan rentang tanpa kalkulus. Nilai minimum
Dengan menggunakan teknologi grafik, kita dapat melihat bahwa minimum adalah tentang
Apa domain dan rentang 3x-2 / 5x + 1 dan domain serta rentang invers dari fungsi?
Domain adalah semua real kecuali -1/5 yang merupakan rentang kebalikannya. Rentang adalah semua real kecuali 3/5 yang merupakan domain dari invers. f (x) = (3x-2) / (5x + 1) didefinisikan dan nilai riil untuk semua x kecuali -1/5, sehingga itu adalah domain f dan rentang f ^ -1 Pengaturan y = (3x -2) / (5x + 1) dan penyelesaian untuk x menghasilkan 5xy + y = 3x-2, jadi 5xy-3x = -y-2, dan karena itu (5y-3) x = -y-2, jadi, akhirnya x = (- y-2) / (5y-3). Kami melihat bahwa y! = 3/5. Jadi kisaran f adalah semua real kecuali 3/5. Ini juga domain dari f ^ -1.
Jika fungsi f (x) memiliki domain -2 <= x <= 8 dan rentang -4 <= y <= 6 dan fungsi g (x) didefinisikan oleh rumus g (x) = 5f ( 2x)) lalu apa domain dan jangkauan g?
Di bawah. Gunakan transformasi fungsi dasar untuk menemukan domain dan rentang baru. 5f (x) berarti bahwa fungsi tersebut diregangkan secara vertikal dengan faktor lima. Oleh karena itu, rentang baru akan span interval yang lima kali lebih besar daripada yang asli. Dalam kasus f (2x), peregangan horizontal dengan faktor setengah diterapkan pada fungsi. Oleh karena itu ekstremitas domain dibelah dua. Dan lagi!
Jika f (x) = 3x ^ 2 dan g (x) = (x-9) / (x + 1), dan x! = - 1, lalu apa yang akan f (g (x)) sama? g (f (x))? f ^ -1 (x)? Apa yang akan menjadi domain, rentang, dan nol untuk f (x)? Apa yang akan menjadi domain, rentang, dan nol untuk g (x)?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = root () (x / 3) D_f = {x dalam RR}, R_f = {f (x) dalam RR; f (x)> = 0} D_g = {x dalam RR; x! = - 1}, R_g = {g (x) dalam RR; g (x)! = 1}