Luas segitiga sama sisi dengan sisi a adalah
Menjawab:
Area sama dengan
Penjelasan:
Pertimbangkan segitiga sama sisi
Luas segitiga ini adalah
Semua sisinya diberikan dan sama dengan
ketinggiannya
Biarkan dasar ketinggian dari vertex
Oleh karena itu, pasangan catheti lainnya,
Sekarang ketinggiannya
dari mana
Sekarang bidang segitiga
Menjawab:
16
Penjelasan:
Luas segitiga sama sisi =
Dalam situasi ini, Area =
=
=
= 16
Segitiga A memiliki luas 12 dan dua sisi dengan panjang 5 dan 7. Segitiga B mirip dengan segitiga A dan memiliki sisi dengan panjang 19. Berapa luas maksimum dan minimum yang mungkin dari segitiga B?
Area Maksimum = 187.947 "" unit kuadrat Area Minimum = 88.4082 "" unit kuadrat Segitiga A dan B serupa. Dengan metode perbandingan dan proporsi solusi, segitiga B memiliki tiga kemungkinan segitiga. Untuk Segitiga A: sisinya x = 7, y = 5, z = 4.800941906394, Sudut Z = 43.29180759327 ^ @ Sudut Z antara sisi x dan y diperoleh dengan menggunakan rumus untuk luas segitiga Area = 1/2 * x * y * sin Z 12 = 1/2 * 7 * 5 * sin ZZ = 43.29180759327 ^ @ Tiga kemungkinan segitiga untuk Segitiga B: sisi adalah Segitiga 1. x_1 = 19, y_1 = 95/7, z_1 = 13.031128031641, Angle Z_1 = 43.29180759327 ^ @ Segitiga 2. x_2 = 133
Segitiga sama kaki memiliki sisi A, B, dan C dengan sisi B dan C sama panjang. Jika sisi A beralih dari (1, 4) ke (5, 1) dan luas segitiga adalah 15, berapakah koordinat yang memungkinkan dari sudut ketiga segitiga?
Kedua simpul membentuk dasar dengan panjang 5, sehingga ketinggiannya harus 6 untuk mendapatkan area 15. Kaki adalah titik tengah dari titik-titik, dan enam unit dalam arah tegak lurus memberi (33/5, 73/10) atau (- 3/5, - 23/10). Pro tip: Cobalah untuk tetap pada konvensi huruf kecil untuk sisi segitiga dan huruf kapital untuk simpul segitiga. Kami diberi dua poin dan area segitiga sama kaki. Dua poin menjadikan basis, b = sqrt {(5-1) ^ 2 + (1-4) ^ 2} = 5. Kaki F dari ketinggian adalah titik tengah dari dua titik, F = ((1 + 5) / 2, (4 + 1) / 2) = (3, 5/2) Vektor arah dari antara titik-titik tersebut adalah ( 1-5, 4-1) = (-
Segitiga sama kaki memiliki sisi A, B, dan C dengan sisi B dan C sama panjang. Jika sisi A beralih dari (7, 1) ke (2, 9) dan luas segitiga adalah 32, berapakah koordinat yang memungkinkan dari sudut ketiga segitiga?
(1825/178, 765/89) atau (-223/178, 125/89) Kami memberi label ulang dalam notasi standar: b = c, A (x, y), B (7,1), C (2,9) . Kami memiliki teks {area} = 32. Dasar dari segitiga sama kaki kami adalah BC. Kami memiliki = | BC | = sqrt {5 ^ 2 + 8 ^ 2} = sqrt {89} Titik tengah BC adalah D = ((7 + 2) / 2, (1 + 9) / 2) = (9/2, 5). Garis-garis tegak lurus BC melewati D dan simpul A. h = AD adalah ketinggian, yang kita dapatkan dari area: 32 = frac 1 2 ah = 1/2 sqrt {89} hh = 64 / sqrt {89} The vektor arah dari B ke C adalah CB = (2-7,9-1) = (- 5,8). Vektor arah tegak lurusnya adalah P = (8,5), menukar koordinat dan meniadakan sa