Menjawab:
Fungsi yang diberikan memiliki titik minimum, tetapi pasti tidak memiliki titik maksimal.
Penjelasan:
Fungsi yang diberikan adalah:
Setelah diferensiasi,
Untuk titik kritis, kita harus mengatur, f '(x) = 0.
Ini adalah titik ekstrem.
Untuk memeriksa apakah fungsi mencapai nilai maksimum atau minimum pada nilai ini, kita dapat melakukan tes turunan kedua.
Karena turunan kedua positif pada titik itu, ini menyiratkan bahwa fungsi mencapai titik minimum pada titik itu.
Apa ekstrem lokal, jika ada, dari f (x) = 2ln (x ^ 2 + 3) -x?
F (x) = 2ln (x ^ 2 + 3) -x memiliki minimum lokal untuk x = 1 dan maksimum lokal untuk x = 3 Kita memiliki: f (x) = 2ln (x ^ 2 + 3) -x fungsi didefinisikan dalam semua RR sebagai x ^ 2 + 3> 0 AA x Kita dapat mengidentifikasi titik-titik kritis dengan menemukan di mana turunan pertama sama dengan nol: f '(x) = (4x) / (x ^ 2 + 3) - 1 = - (x ^ 2-4x + 3) / (x ^ 2 + 3) - (x ^ 2-4x + 3) / (x ^ 2 + 3) = 0 x ^ 2-4x + 3 = 0 x = 2 + -sqrt (4-3) = 2 + -1 sehingga titik kritisnya adalah: x_1 = 1 dan x_2 = 3 Karena penyebutnya selalu positif, tanda f '(x) adalah kebalikan dari tanda pembilang (x ^ 2-4x + 3) Sekarang kita tah
Apa ekstrem lokal, jika ada, dari f (x) = 120x ^ 5 - 200x ^ 3?
Maksimal lokal 80 (pada x = -1) dan minimum lokal -80 (pada x = 1. f (x) = 120x ^ 5 - 200x ^ 3 f '(x) = 600x ^ 4 - 600x ^ 2 = 600x ^ 2 (x ^ 2 - 1) Angka kritis adalah: -1, 0, dan 1 Tanda f 'berubah dari + ke - saat kita melewati x = -1, jadi f (-1) = 80 adalah maksimum lokal (Karena f adalah ganjil, kita dapat segera menyimpulkan bahwa f (1) = - 80 adalah minimum relatif dan f (0) bukan ekstrem lokal.) Tanda f 'tidak berubah ketika kita melewati x = 0, jadi f (0) bukan ekstrem lokal. Tanda f 'berubah dari - menjadi + ketika kita melewati x = 1, jadi f (1) = -80 adalah minimum lokal.
Apa ekstrem lokal, jika ada, dari f (x) = 2x + 15x ^ (2/15)?
Maksimal lokal 13 at 1 dan minimum lokal 0 at 0. Domain f adalah RR f '(x) = 2 + 2x ^ (- 13/15) = (2x ^ (13/15) +2) / x ^ (13/15) f '(x) = 0 pada x = -1 dan f' (x) tidak ada pada x = 0. Keduanya -1 dan 9 berada dalam domain f, sehingga keduanya merupakan angka kritis. Tes Derivatif Pertama: Aktif (-oo, -1), f '(x)> 0 (misalnya pada x = -2 ^ 15) Aktif (-1,0), f' (x) <0 (misalnya pada x = -1 / 2 ^ 15) Oleh karena itu f (-1) = 13 adalah maksimum lokal. Pada (0, oo), f '(x)> 0 (gunakan sembarang positif x besar) Jadi f (0) = 0 adalah minimum lokal.