Menjawab:
Ketinggian segitiga sama sisi
Penjelasan:
Perimeter segitiga sama sisi
Setiap sisi segitiga,
Formula untuk ketinggian segitiga sama sisi
Segitiga sama kaki memiliki sisi A, B, dan C dengan sisi B dan C sama panjang. Jika sisi A beralih dari (1, 4) ke (5, 1) dan luas segitiga adalah 15, berapakah koordinat yang memungkinkan dari sudut ketiga segitiga?
Kedua simpul membentuk dasar dengan panjang 5, sehingga ketinggiannya harus 6 untuk mendapatkan area 15. Kaki adalah titik tengah dari titik-titik, dan enam unit dalam arah tegak lurus memberi (33/5, 73/10) atau (- 3/5, - 23/10). Pro tip: Cobalah untuk tetap pada konvensi huruf kecil untuk sisi segitiga dan huruf kapital untuk simpul segitiga. Kami diberi dua poin dan area segitiga sama kaki. Dua poin menjadikan basis, b = sqrt {(5-1) ^ 2 + (1-4) ^ 2} = 5. Kaki F dari ketinggian adalah titik tengah dari dua titik, F = ((1 + 5) / 2, (4 + 1) / 2) = (3, 5/2) Vektor arah dari antara titik-titik tersebut adalah ( 1-5, 4-1) = (-
Segitiga sama kaki memiliki sisi A, B, dan C dengan sisi B dan C sama panjang. Jika sisi A beralih dari (7, 1) ke (2, 9) dan luas segitiga adalah 32, berapakah koordinat yang memungkinkan dari sudut ketiga segitiga?
(1825/178, 765/89) atau (-223/178, 125/89) Kami memberi label ulang dalam notasi standar: b = c, A (x, y), B (7,1), C (2,9) . Kami memiliki teks {area} = 32. Dasar dari segitiga sama kaki kami adalah BC. Kami memiliki = | BC | = sqrt {5 ^ 2 + 8 ^ 2} = sqrt {89} Titik tengah BC adalah D = ((7 + 2) / 2, (1 + 9) / 2) = (9/2, 5). Garis-garis tegak lurus BC melewati D dan simpul A. h = AD adalah ketinggian, yang kita dapatkan dari area: 32 = frac 1 2 ah = 1/2 sqrt {89} hh = 64 / sqrt {89} The vektor arah dari B ke C adalah CB = (2-7,9-1) = (- 5,8). Vektor arah tegak lurusnya adalah P = (8,5), menukar koordinat dan meniadakan sa
Buktikan pernyataan berikut. Biarkan ABC menjadi segitiga siku-siku, sudut kanan di titik C. Ketinggian yang ditarik dari C ke sisi miring membagi segitiga menjadi dua segitiga siku-siku yang mirip satu sama lain dan dengan segitiga asli?
Lihat di bawah. Menurut Pertanyaan, DeltaABC adalah segitiga siku-siku dengan / _C = 90 ^ @, dan CD adalah ketinggian untuk AB miring. Bukti: Mari Asumsikan bahwa / _ABC = x ^ @. Jadi, angleBAC = 90 ^ @ - x ^ @ = (90 - x) ^ @ Sekarang, CD tegak lurus AB. Jadi, angleBDC = angleADC = 90 ^ @. Dalam DeltaCBD, angleBCD = 180 ^ @ - angleBDC - angleCBD = 180 ^ @ - 90 ^ @ - x ^ @ = (90 -x) ^ @ Demikian pula, angleACD = x ^ @. Sekarang, Di DeltaBCD dan DeltaACD, sudut CBD = sudut ACD dan sudut BDC = angleADC. Jadi, dengan AA Kriteria Kesamaan, DeltaBCD ~ = DeltaACD. Demikian pula, Kita dapat menemukan, DeltaBCD ~ = DeltaABC. Dari s