Menjawab:
490 mikroorganisme.
Penjelasan:
Saya akan mengasumsikan pertumbuhan eksponensial untuk bakteri. Ini berarti bahwa kita dapat memodelkan pertumbuhan dengan fungsi eksponensial:
dimana
Sub dua nilai yang diketahui ke dalam fungsi untuk mendapatkan dua persamaan:
Bagilah (2) dengan (1) untuk menemukan
Ambil log alami dari kedua sisi untuk mengisolasi
Sekarang kita memiliki konstanta pertumbuhan,
Menjawab:
Ukuran budaya awal adalah
Penjelasan:
Pertumbuhan dapat dianggap sebagai perkembangan geometris dengan tingkat pertumbuhan yang sama setelah setiap interval
Tingkat pertumbuhan dapat ditentukan oleh
Dalam hal ukuran populasi awal
Ini berarti:
Jadi jika kita membalikkan proses, kita hanya membagi
Ingat bahwa
Populasi awal adalah 250 bakteri, dan populasi setelah 9 jam adalah dua kali lipat populasi setelah 1 jam. Berapa banyak bakteri setelah 5 jam?
Dengan asumsi pertumbuhan eksponensial yang seragam, populasi berlipat ganda setiap 8 jam. Kita dapat menulis rumus untuk populasi sebagai p (t) = 250 * 2 ^ (t / 8) di mana t diukur dalam jam. 5 jam setelah titik awal, populasi akan menjadi p (5) = 250 * 2 ^ (5/8) ~ = 386
Jumlah bakteri dalam kultur tumbuh dari 275 menjadi 1135 dalam tiga jam. Bagaimana Anda menemukan jumlah bakteri setelah 7 jam?
7381 Bakteri menjalani reproduksi aseksual pada tingkat eksponensial. Kami memodelkan perilaku ini menggunakan fungsi pertumbuhan eksponensial. warna (putih) (aaaaaaaaaaaaaaaaaa) warna (biru) (y (t) = A_ (o) * e ^ (kt) Di mana "y (" t ") = nilai pada waktu (" t ")" A _ ("o" ) = "nilai asli" "e = angka Euler 2.718" "k = tingkat pertumbuhan" "t = waktu yang berlalu" Anda diberitahu bahwa biakan bakteri tumbuh dari warna (merah) [275 ke warna (merah) [1135 in warna (merah) "3 jam". Ini akan secara otomatis memberi tahu Anda bahwa: warna
Jumlah bakteri dalam kultur tumbuh dari 275 menjadi 1135 dalam tiga jam. Bagaimana Anda menemukan jumlah bakteri setelah 7 jam dan Gunakan model pertumbuhan eksponensial: A = A_0e ^ (rt)?
~~ 7514 A = A_0e ^ (rt) t dalam jam. A_0 = 275. A (3) = 1135. 1135 = 275e ^ (3r) 1135/275 = e ^ (3r) Ambil log natural dari kedua sisi: ln (1135/275) = 3r r = 1 / 3ln (1135 / / 275) jam ^ (- 1) A (t) = A_0e ^ (1 / 3ln (1135/275) t) Saya berasumsi bahwa itu hanya setelah 7 jam, bukan 7 jam setelah yang awal 3. A (7) = 275 * e ^ (7 / 3ln (1135/275)) ~~ 7514