
Menjawab:
Urutan menyatu
Penjelasan:
Untuk mengetahui apakah urutannya
Menggunakan aturan l'Hôpital,
Sejak
Istilah pertama dan kedua dari urutan geometri masing-masing adalah pertama dan ketiga dari urutan linear. Istilah keempat dari urutan linear adalah 10 dan jumlah dari lima istilah pertama adalah 60. Menemukan lima istilah pertama dari urutan linear?

{16, 14, 12, 10, 8} Urutan geometri tipikal dapat direpresentasikan sebagai c_0a, c_0a ^ 2, cdots, c_0a ^ k dan deret aritmatika khas seperti c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Memanggil c_0 a sebagai elemen pertama untuk deret geometri yang kita miliki {(c_0 a ^ 2 = c_0a + 2Delta -> "GS pertama dan kedua adalah yang pertama dan ketiga dari LS"), (c_0a + 3Delta = 10- > "Istilah keempat dari urutan linear adalah 10"), (5c_0a + 10Delta = 60 -> "Jumlah dari lima istilah pertama adalah 60"):} Memecahkan untuk c_0, a, Delta yang kita peroleh c_0 = 64/3 , a = 3/4, Delta
Bagaimana Anda menggunakan Tes Integral untuk menentukan konvergensi atau divergensi seri: jumlah n e ^ -n dari n = 1 hingga tak terbatas?

Ambil integral int_1 ^ ooxe ^ -xdx, yang terbatas, dan perhatikan bahwa ia mengikat sum_ (n = 2) ^ oo n e ^ (- n). Oleh karena itu konvergen, jadi jumlah_ (n = 1) ^ oo n e ^ (- n) juga. Pernyataan formal dari tes integral menyatakan bahwa jika sirip [0, oo) memperbaikiRR fungsi penurunan monoton yang non-negatif. Maka jumlah sum_ (n = 0) ^ oof (n) adalah konvergen jika dan hanya jika "sup" _ (N> 0) int_0 ^ Nf (x) dx terbatas. (Tau, Terence. Analisis I, edisi kedua. Agen buku Hindustan. 2009). Pernyataan ini mungkin tampak agak teknis, tetapi idenya adalah sebagai berikut. Mengambil dalam kasus ini fungsi f (x)
Bagaimana saya menemukan konvergensi atau divergensi dari seri ini? jumlah dari 1 hingga tak terbatas 1 / n ^ lnn

Konvergen Pertimbangkan seri jumlah_ (n = 1) ^ oo1 / n ^ p, di mana p> 1. Dengan uji-p, seri ini bertemu. Sekarang, 1 / n ^ ln n <1 / n ^ p untuk semua yang cukup besar n selama p adalah nilai yang terbatas. Jadi, dengan uji perbandingan langsung, jumlah_ (n = 1) ^ oo1 / n ^ ln n bertemu. Bahkan, nilainya kira-kira sama dengan 2.2381813.