Menjawab:
Penjelasan:
Temukan turunannya:
oleh aturan produk dan berbagai penyederhanaan.
Temukan nol:
Akar polinomial ini adalah
Temukan dimana
Sejak pembagian oleh
Nol dari fungsi f (x) adalah 3 dan 4, sedangkan nol dari fungsi kedua g (x) adalah 3 dan 7. Berapakah nol dari fungsi y = f (x) / g (x )?
Hanya nol dari y = f (x) / g (x) adalah 4. Karena nol dari fungsi f (x) adalah 3 dan 4, ini berarti (x-3) dan (x-4) adalah faktor-faktor dari f (x ). Selanjutnya, nol dari fungsi kedua g (x) adalah 3 dan 7, yang berarti (x-3) dan (x-7) adalah faktor-faktor dari f (x). Ini berarti dalam fungsi y = f (x) / g (x), meskipun (x-3) harus membatalkan penyebut g (x) = 0 tidak didefinisikan, ketika x = 3. Itu juga tidak didefinisikan ketika x = 7. Karenanya, kami memiliki lubang di x = 3. dan hanya nol dari y = f (x) / g (x) adalah 4.
Manakah dari pernyataan berikut ini yang benar / salah? Membenarkan jawaban Anda. (i) R² memiliki banyak subruang vektor yang tidak nol, tepat yang tepat. (ii) Setiap sistem persamaan linear yang homogen memiliki solusi yang tidak nol.
"(i) Benar." "(ii) Salah." "Bukti." "(i) Kita dapat membangun seperangkat subruang seperti itu:" "1)" forall r di RR, "biarkan:" qquad quad V_r = (x, r x) dalam RR ^ 2. "[Secara geometris," V_r "adalah garis melalui asal dari" RR ^ 2, "dari slope" r.] "2) Kami akan memeriksa bahwa subruang ini membenarkan pernyataan (i)." "3) Jelas:" qquad qquad qquad qquad qquad qquad qquad V_r sube RR ^ 2. "4) Periksa bahwa:" qquad qquad V_r "adalah subruang dari" RR ^ 2. "Biarkan:" qquad u, v dala
Jika f (x) = 3x ^ 2 dan g (x) = (x-9) / (x + 1), dan x! = - 1, lalu apa yang akan f (g (x)) sama? g (f (x))? f ^ -1 (x)? Apa yang akan menjadi domain, rentang, dan nol untuk f (x)? Apa yang akan menjadi domain, rentang, dan nol untuk g (x)?
F (g (x)) = 3 ((x-9) / (x + 1)) ^ 2 g (f (x)) = (3x ^ 2-9) / (3x ^ 2 + 1) f ^ - 1 (x) = root () (x / 3) D_f = {x dalam RR}, R_f = {f (x) dalam RR; f (x)> = 0} D_g = {x dalam RR; x! = - 1}, R_g = {g (x) dalam RR; g (x)! = 1}