Bagaimana Anda mengintegrasikan int 1 / sqrt (-e ^ (2x) -20e ^ x-101) dx menggunakan substitusi trigonometri?

Bagaimana Anda mengintegrasikan int 1 / sqrt (-e ^ (2x) -20e ^ x-101) dx menggunakan substitusi trigonometri?
Anonim

Menjawab:

# -sqrt (101) / 101i * ln ((10 ((e ^ x + 10) / (sqrt (e ^ (2x) + 20e ^ x + 101) +1)) + 1-sqrt101) / (10 ((e ^ x + 10) / (sqrt (e ^ (2x) + 20e ^ x + 101) +1)) + 1 + sqrt101)) + C #

Penjelasan:

Solusinya agak panjang !!!

Dari yang diberikan #int 1 / sqrt (-e ^ (2x) -20e ^ x-101) * dx #

#int 1 / ((sqrt (-1) * sqrt (e ^ (2x) + 20e ^ x + 101)) * dx #

Perhatikan itu # i = sqrt (-1) # nomor imajiner

Sisihkan bilangan kompleks itu untuk sementara waktu dan lanjutkan ke integral

#int 1 / (sqrt (e ^ (2x) + 20e ^ x + 101)) * dx #

dengan mengisi kotak dan melakukan beberapa pengelompokan:

#int 1 / (sqrt ((e ^ x) ^ 2 + 20e ^ x + 100-100 + 101)) * dx #

#int 1 / (sqrt (((e ^ x) ^ 2 + 20e ^ x + 100) -100 + 101)) * dx #

#int 1 / (sqrt (((e ^ x + 10) ^ 2-100 + 101))) * dx #

#int 1 / (sqrt (((e ^ x + 10) ^ 2 + 1))) * dx #

Substitusi Trigonometrik Pertama: ##

Sudut akut # w # dengan sisi yang berlawanan # = e ^ x + 10 # dan sisi yang berdekatan #=1# dengan hypotenuse =#sqrt ((e ^ x + 10) ^ 2 + 1) #

Membiarkan # e ^ x + 10 = tan w #

# e ^ x dx = sec ^ 2 w # # dw #

# dx = (dtk ^ 2w * dw) / e ^ x #

lalu

# dx = (dtk ^ 2w * dw) / tan (w-10) #

Integral menjadi

#int 1 / sqrt (tan ^ 2w + 1) * (dtk ^ 2w * dw) / (tan w-10) #

#int 1 / sqrt (sec ^ 2w) * (sec ^ 2w * dw) / (tan w-10) #

#int 1 / sec w * (sec ^ 2w * dw) / (tan w-10) #

#int (secw * dw) / (tan w-10) #

dari trigonometri #sec w = 1 / cos w # dan #tan w = sin w / cos w #

Integral menjadi

#int (1 / cos w * dw) / (sin w / cos w-10) # dan

#int (dw) / (sin w-10 cos w) #

Substitusi trigonometri kedua:

Membiarkan # w = 2 tan ^ -1 z #

# dw = 2 * dz / (1 + z ^ 2) #

dan juga # z = tan (b / 2) #

Segitiga kanan: Sudut akut # w / 2 # dengan sisi yang berlawanan # = z #

Sisi yang berdekatan #=1# dan sisi miring # = sqrt (z ^ 2 + 1) #

Dari Trigonometri: Memanggil rumus setengah sudut

#sin (w / 2) = sqrt ((1-cos w) / 2 #

# z / sqrt (z ^ 2 + 1) = sqrt ((1-cos w) / 2 #

pemecahan untuk #cos w #

#cos w = (1-z ^ 2) / (1 + z ^ 2) #

Juga menggunakan identitas #sin ^ 2w = 1-cos ^ 2w #

mengikuti itu

#sin w = (2z) / (1 + z ^ 2) #

integral menjadi

#int (dw) / (sin w-10 cos w) = int (2 * dz / (1 + z ^ 2)) / ((2z) / (1 + z ^ 2) -10 * (1-z ^ 2) / (1 + z ^ 2)) #

Menyederhanakan hasil integral

#int (2 * dz) / (2z-10 + 10z ^ 2) #

#int ((1/5) * dz) / (z ^ 2 + z / 5-1) #

Dengan mengisi kotak:

#int ((1/5) * dz) / (z ^ 2 + z / 5 + 1 / 100-1 / 100-1) #

#int ((1/5) * dz) / ((z + 1/10) ^ 2-101 / 100) #

#int ((1/5) * dz) / ((z + 1/10) ^ 2- (sqrt101 / 10) ^ 2) #

Gunakan sekarang formula #int (du) / (u ^ 2-a ^ 2) = 1 / (2a) * ln ((u-a) / (u + a)) + C #

Membiarkan # u = z + 1/10 # dan # a = sqrt101 / 10 # dan termasuk kembali # i = sqrt (-1) #

Tulis jawaban akhir menggunakan variabel asli

# -sqrt (101) / 101i * ln ((10 ((e ^ x + 10) / (sqrt (e ^ (2x) + 20e ^ x + 101) +1)) + 1-sqrt101) / (10 ((e ^ x + 10) / (sqrt (e ^ (2x) + 20e ^ x + 101) +1)) + 1 + sqrt101)) + C #