Menjawab:
Penjelasan:
Ungkapan, "Enam dari satu, jika selusin yang lain," biasanya digunakan untuk menunjukkan bahwa dua alternatif pada dasarnya setara, karena enam setengah lusin adalah jumlah yang sama. Tetapi apakah "enam lusin lusin" dan "setengah lusin lusin" sama?
Tidak, mereka bukan. Seperti yang Anda katakan, "enam" sama dengan "setengah lusin" Jadi "enam" diikuti oleh 3 "lusin" adalah sama dengan "setengah lusin" diikuti oleh 3 "lusin" s - yaitu: " setengah "diikuti oleh 4" lusin "s. Dalam "setengah lusin lusin", kita dapat mengganti "setengah lusin" dengan "enam" untuk mendapatkan "enam lusin lusin".
Anak-anak ditanya apakah mereka telah bepergian ke Euro. 68 anak-anak menunjukkan bahwa mereka telah melakukan perjalanan ke Euro dan 124 anak-anak mengatakan bahwa mereka belum melakukan perjalanan ke Eropa. Jika seorang anak dipilih secara acak, berapakah probabilitas mendapatkan seorang anak yang pergi ke Euro?
31/48 = 64,583333% = 0,6453333 Langkah pertama dalam memecahkan masalah ini adalah mencari tahu jumlah total anak-anak sehingga Anda dapat mengetahui berapa banyak anak yang pergi ke Eropa dibandingkan jumlah anak yang Anda miliki secara total. Ini akan terlihat seperti 124 / t, di mana t mewakili jumlah total anak-anak. Untuk mengetahui apa itu, kami menemukan 68 + 124 karena itu memberi kami jumlah semua anak yang disurvei. 68 + 124 = 192 Jadi, 192 = t Ekspresi kita kemudian menjadi 124/192. Sekarang untuk menyederhanakan: (124-: 4) / (192-: 4) = 31/48 Karena 32 adalah bilangan prima, kita tidak bisa lagi menyederhanakan
Catatan menunjukkan bahwa probabilitasnya adalah 0,00006 bahwa mobil akan memiliki ban kempes saat mengemudi melalui terowongan tertentu. Temukan kemungkinan bahwa setidaknya 2 dari 10.000 mobil yang melewati saluran ini akan memiliki ban kempes?
0.1841 Pertama, kita mulai dengan binomial: X ~ B (10 ^ 4,6 * 10 ^ -5), meskipun p sangat kecil, n sangat besar. Karena itu kami dapat memperkirakan ini dengan menggunakan normal. Untuk X ~ B (n, p); Y ~ N (np, np (1-p)) Jadi, kita memiliki Y ~ N (0.6,0.99994) Kami ingin P (x> = 2), dengan mengoreksi menggunakan normal bounds, kita memiliki P (Y> = 1.5) Z = (Y-mu) / sigma = (Y-np) / sqrt (np (1-p)) = (1.5-0.6) / sqrt (0.99994) ~~ 0.90 P (Z> = 0.90) = 1-P (Z <= 0.90) Menggunakan tabel-Z, kita menemukan bahwa z = 0.90 memberikan P (Z <= 0.90) = 0.8159 P (Z> = 0.90) = 1-P (Z <= 0,90) = 1-0,8159 = 0,1841