Menjawab:
Penjelasan:
Istilah pertama dan kedua dari urutan geometri masing-masing adalah pertama dan ketiga dari urutan linear. Istilah keempat dari urutan linear adalah 10 dan jumlah dari lima istilah pertama adalah 60. Menemukan lima istilah pertama dari urutan linear?
{16, 14, 12, 10, 8} Urutan geometri tipikal dapat direpresentasikan sebagai c_0a, c_0a ^ 2, cdots, c_0a ^ k dan deret aritmatika khas seperti c_0a, c_0a + Delta, c_0a + 2Delta, cdots, c_0a + kDelta Memanggil c_0 a sebagai elemen pertama untuk deret geometri yang kita miliki {(c_0 a ^ 2 = c_0a + 2Delta -> "GS pertama dan kedua adalah yang pertama dan ketiga dari LS"), (c_0a + 3Delta = 10- > "Istilah keempat dari urutan linear adalah 10"), (5c_0a + 10Delta = 60 -> "Jumlah dari lima istilah pertama adalah 60"):} Memecahkan untuk c_0, a, Delta yang kita peroleh c_0 = 64/3 , a = 3/4, Delta
Pemilik toko stereo ingin mengiklankan bahwa ia memiliki banyak sistem suara yang berbeda. Toko membawa 7 pemutar CD yang berbeda, 8 penerima yang berbeda dan 10 pembicara yang berbeda. Berapa banyak sistem suara yang berbeda yang dapat diiklankan oleh pemiliknya?
Pemilik dapat mengiklankan total 560 sistem suara yang berbeda! Cara untuk memikirkan ini adalah bahwa setiap kombinasi terlihat seperti ini: 1 Speaker (sistem), 1 Receiver, 1 CD Player Jika kita hanya memiliki 1 opsi untuk speaker dan CD player, tetapi kita masih memiliki 8 penerima yang berbeda, maka akan ada 8 kombinasi. Jika kami hanya memperbaiki pengeras suara (berpura-pura bahwa hanya ada satu sistem pengeras suara yang tersedia), maka kami dapat bekerja dari sana: S, R_1, C_1 S, R_1, C_2 S, R_1, C_3 ... S, R_1, C_8 S , R_2, C_1 ... S, R_7, C_8 Saya tidak akan menulis setiap kombinasi, tetapi intinya adalah bahwa me
Tunjukkan bahwa semua urutan Poligon yang dihasilkan oleh Seri urutan Aritmatika dengan perbedaan umum d, d dalam ZZ adalah urutan poligon yang dapat dihasilkan oleh a_n = an ^ 2 + bn + c?
A_n = P_n ^ (d + 2) = an ^ 2 + b ^ n + c dengan a = d / 2; b = (2-d) / 2; c = 0 P_n ^ (d + 2) adalah deretan pangkat poligonal, contoh r = d + 2 diberi urutan deret hitung yang dihitung dengan d = 3 Anda akan memiliki urutan warna (merah) (pentagonal): P_n ^ warna ( red) 5 = 3 / 2n ^ 2-1 / 2n memberikan P_n ^ 5 = {1, warna (merah) 5, 12, 22,35,51, cdots} Urutan poligon dibangun dengan mengambil jumlah n dari aritmatika urutan. Dalam kalkulus, ini akan menjadi integrasi. Jadi hipotesis kunci di sini adalah: Karena urutan aritmatika adalah linear (pikirkan persamaan linear) maka mengintegrasikan urutan linear akan menghasilk