Bagaimana Anda menemukan titik belok untuk y = sin x + cos x?

Bagaimana Anda menemukan titik belok untuk y = sin x + cos x?
Anonim

Menjawab:

Titik infleksi adalah: # ((3pi) / 4 + 2kpi, 0) "AND" ((-pi / 2 + 2kpi, 0)) #

Penjelasan:

1 - Pertama kita harus menemukan turunan kedua dari fungsi kita.

2 - Kedua, kami samakan turunan itu# ((d ^ 2thn) / (dx ^ 2)) # ke nol

# y = sinx + cosx #

# => (dy) / (dx) = cosx-sinx #

# => (d ^ 2y) / (dx ^ 2) = - sinx-cosx #

Berikutnya, # -sinx-cosx = 0 #

# => sinx + cosx = 0 #

Sekarang, kami akan menyatakannya dalam bentuk #Rcos (x + lamda) #

Dimana # lambda # hanya sudut yang tajam dan # R # adalah bilangan bulat positif yang harus ditentukan. Seperti ini

# sinx + cosx = Rcos (x + lambda) #

# => sinx + cosx = Rcosxcoslamda - sinxsinlamda #

Dengan menyamakan koefisien # sinx # dan # cosx # di kedua sisi persamaan,

# => Rcoslamda = 1 #

dan # Rsinlambda = -1 #

# (Rsinlambda) / (Rcoslambda) = (- 1) / 1 => tanlambda = -1 => lambda = tan ^ -1 (-1) = - pi / 4 #

Dan # (Rcoslambda) ^ 2 + (Rsinlambda) ^ 2 = (1) ^ 2 + (- 1) ^ 2 #

# => R ^ 2 (cos ^ 2x + sin ^ 2x) = 2 #

Tapi kita tahu identitasnya, # cos ^ 2x + sin ^ 2 = 1 #

Karenanya, # R ^ 2 (1) = 2 => R = sqrt (2) #

Dalam kulit kacang, # (d ^ 2thn) / (dx ^ 2) = - sinx-cosx = sqrt (2) cos (x-pi / 4) = 0 #

# => sqrt (2) cos (x-pi / 4) = 0 #

# => cos (x-pi / 4) = 0 = cos (pi / 2) #

Jadi solusi umum # x # aku s: # x-pi / 4 = + - pi / 2 + 2kpi #, # kinZZ #

# => x = pi / 4 + -pi / 2 + 2kpi #

Jadi titik-titik infleksi adalah titik yang memiliki koordinat:

# (pi / 4 + -pi / 2 + 2kpi, sqrt (2) cos (pi / 4 + -pi / 2-pi / 4)) #

Kami memiliki dua kasus untuk berurusan dengan, Kasus 1

# (pi / 4 + pi / 2 + 2kpi, sqrt (2) cos (pi / 4 + pi / 2-pi / 4)) #

# => ((3pi) / 4 + 2kpi, sqrt (2) cos (pi / 2)) #

# => ((3pi) / 4 + 2kpi, 0) #

Kasus 2

# (pi / 4-pi / 2 + 2kpi, sqrt (2) cos (pi / 4-pi / 2-pi / 4)) #

# => (- pi / 2 + 2kpi, sqrt (2) cos (-pi / 2)) #

# => ((- pi / 2 + 2kpi, 0)) #