Menjawab:
Tidak ada.
Penjelasan:
Sebagai
Nilai tidak boleh mendekati angka pembatas tunggal dan
Berikut ini adalah grafik untuk membantu memahami ini lebih lanjut
grafik {e ^ xsin (1 / x) -4.164, 4.604, -1.91, 2.473}
Apa itu sama? lim_ (x-> pi / 2) sin (cosx) / (cos ^ 2 (x / 2) -sin ^ 2 (x / 2)) =?
1 "Perhatikan bahwa:" warna (merah) (cos ^ 2 (x) -sin ^ 2 (x) = cos (2x)) "Jadi di sini kita memiliki" lim_ {x-> pi / 2} sin (cos (x) )) / cos (x) "Sekarang terapkan rule de l 'Hôptial:" = lim_ {x-> pi / 2} cos (cos (x)) * (- sin (x)) / (- sin (x)) = lim_ {x-> pi / 2} cos (cos (x)) = cos (cos (pi / 2)) = cos (0) = 1
Apa itu lim_ (xto0 ^ +) ((1 / x) - ((1) / (e ^ (x) -1))))?
Lim_ (x-> 0 ^ +) (1 / x-1 / (e ^ x-1)) = 1/2 Jumlah dua istilah: 1 / x-1 / (e ^ x-1) = (xe ^ x + 1) / (x (e ^ x-1)) Batasnya sekarang dalam bentuk tak tentu 0/0 sehingga kita sekarang dapat menerapkan aturan l'Hospital: lim_ (x-> 0 ^ +) (1 / x- 1 / (e ^ x-1)) = lim_ (x-> 0 ^ +) (d / dx (e ^ x + 1-x)) / (d / dx x (e ^ x-1)) lim_ ( x-> 0 ^ +) (1 / x-1 / (e ^ x-1)) = lim_ (x-> 0 ^ +) (e ^ x-1) / (e ^ x-1 + xe ^ x ) dan karena ini sampai dalam bentuk 0/0 untuk kedua kalinya: lim_ (x-> 0 ^ +) (1 / x-1 / (e ^ x-1)) = lim_ (x-> 0 ^ +) (d / dx (e ^ x-1)) / (d / dx (e ^ x-1 + xe ^ x)) lim_ (x-> 0 ^ +) (1
Apa itu lim_ (xrarroo) (e ^ (2x) sin (1 / x)) / x ^ 2?
Lim_ (x-> oo) (e ^ (2x) sin (1 / x)) / x ^ 2 = oo Biarkan y = (e ^ (2x) sin (1 / x)) / x ^ 2 lny = ln ( (e ^ (2x) sin (1 / x)) / x ^ 2) lny = lne ^ (2x) + ln (sin (1 / x)) - lnx ^ 2 lny = 2xlne + ln (sin (1 / x) )) - 2lnx lny = 2x + ln (sin (1 / x)) - 2lnx lim_ (x-> oo) [lny = 2x + ln (sin (1 / x)) - 2lnx] lim_ (x-> oo) lny = lim_ (x-> oo) [2x + ln (sin (1 / x)) - 2lnx] lim_ (x-> oo) lny = oo e ^ lny = e ^ oo y = oo