Menjawab:
Pertanyaannya harus mengatakan "Tunjukkan itu
Penjelasan:
Gunakan teorema nilai menengah.
Seandainya
Kami akan menunjukkan bahwa gambar
Jika
Tapi sekarang
Ada bilangan irasional di antaranya
Fungsi f sedemikian rupa sehingga f (x) = a ^ 2x ^ 2-ax + 3b untuk x <1 / (2a) Dimana a dan b adalah konstan untuk kasus di mana a = 1 dan b = -1 Temukan f ^ - 1 (cf dan temukan domainnya saya tahu domain f ^ -1 (x) = rentang f (x) dan -13/4 tapi saya tidak tahu arah tanda ketidaksetaraan?
Lihat di bawah. a ^ 2x ^ 2-ax + 3b x ^ 2-x-3 Kisaran: Dimasukkan ke dalam bentuk y = a (xh) ^ 2 + kh = -b / (2a) k = f (h) h = 1/2 f (h) = f (1/2) = (1/2) ^ 2- (1/2) -3 = -13 / 4 Nilai minimum -13/4 Ini terjadi pada x = 1/2 Jadi rentangnya adalah (- 13/4, oo) f ^ (- 1) (x) x = y ^ 2-y-3 y ^ 2-y- (3-x) = 0 Menggunakan rumus kuadratik: y = (- (- 1) + -sqrt ((- 1) ^ 2-4 (1) (- 3-x))) / 2 y = (1 + -sqrt (4x + 13)) / 2 f ^ (- 1) (x) = ( 1 + sqrt (4x + 13)) / 2 f ^ (- 1) (x) = (1-sqrt (4x + 13)) / 2 Dengan sedikit pemikiran kita dapat melihat bahwa untuk domain kita memiliki invers yang diperlukan adalah : f ^ (- 1) (x) = (1-sqr
Andrew mengklaim bahwa bookend kayu berbentuk segitiga siku-siku 45 ° - 45 ° - 90 ° memiliki panjang sisi 5 in., 5 in., Dan 8 in. Apakah dia benar? Jika demikian, tunjukkan pekerjaannya dan jika tidak, tunjukkan mengapa tidak.
Andrew salah. Jika kita berurusan dengan segitiga siku-siku, maka kita dapat menerapkan teorema pythagoras, yang menyatakan bahwa a ^ 2 + b ^ 2 = h ^ 2 di mana h adalah sisi miring segitiga, dan a dan b dua sisi lainnya. Andrew mengklaim bahwa a = b = 5in. dan h = 8 dalam. 5 ^ 2 + 5 ^ 2 = 25 + 25 = 50 8 ^ 2 = 64! = 50 Oleh karena itu, ukuran segitiga yang diberikan oleh Andrew salah.
Catatan menunjukkan bahwa probabilitasnya adalah 0,00006 bahwa mobil akan memiliki ban kempes saat mengemudi melalui terowongan tertentu. Temukan kemungkinan bahwa setidaknya 2 dari 10.000 mobil yang melewati saluran ini akan memiliki ban kempes?
0.1841 Pertama, kita mulai dengan binomial: X ~ B (10 ^ 4,6 * 10 ^ -5), meskipun p sangat kecil, n sangat besar. Karena itu kami dapat memperkirakan ini dengan menggunakan normal. Untuk X ~ B (n, p); Y ~ N (np, np (1-p)) Jadi, kita memiliki Y ~ N (0.6,0.99994) Kami ingin P (x> = 2), dengan mengoreksi menggunakan normal bounds, kita memiliki P (Y> = 1.5) Z = (Y-mu) / sigma = (Y-np) / sqrt (np (1-p)) = (1.5-0.6) / sqrt (0.99994) ~~ 0.90 P (Z> = 0.90) = 1-P (Z <= 0.90) Menggunakan tabel-Z, kita menemukan bahwa z = 0.90 memberikan P (Z <= 0.90) = 0.8159 P (Z> = 0.90) = 1-P (Z <= 0,90) = 1-0,8159 = 0,1841