Akar persatuan adalah bilangan kompleks yang ketika dinaikkan ke beberapa bilangan bulat positif akan mengembalikan 1.
Ini adalah angka kompleks
dimana
Untuk apapun
Kapan
Akar persatuan:
Kapan
Akar persatuan:
Kapan
Akar persatuan =
Kapan
Akar persatuan =
Jika jumlah akar kubus persatuan adalah 0 maka buktikan bahwa Produk akar kubus persatuan = 1 Ada yang?
"Lihat penjelasan" z ^ 3 - 1 = 0 "adalah persamaan yang menghasilkan akar pangkat tiga dari" "kesatuan. Jadi kita dapat menerapkan teori polinomial ke" "menyimpulkan bahwa" z_1 * z_2 * z_3 = 1 "(identitas Newton ). " "Jika Anda benar-benar ingin menghitungnya dan memeriksanya:" z ^ 3 - 1 = (z - 1) (z ^ 2 + z + 1) = 0 => z = 1 "ATAU" z ^ 2 + z + 1 = 0 => z = 1 "ATAU" z = (-1 pm sqrt (3) i) / 2 => (z_1) * (z_2) * (z_3) = 1 * ((- 1 + sqrt (3) i ) / 2) * (- 1-sqrt (3) i) / 2 = 1 * (1 + 3) / 4 = 1
Apa itu (akar kuadrat 2) + 2 (akar kuadrat 2) + (akar kuadrat 8) / (akar kuadrat 3)?
(sqrt (2) + 2sqrt (2) + sqrt8) / sqrt3 sqrt 8 dapat dinyatakan sebagai warna (merah) (2sqrt2 ekspresi sekarang menjadi: (sqrt (2) + 2sqrt (2) + 2 (sqs)) ) / sqrt3 = (5sqrt2) / sqrt3 sqrt 2 = 1.414 dan sqrt 3 = 1.732 (5 xx 1.414) / 1.732 = 7.07 / 1.732 = 4.08
Berapakah akar kuadrat dari 7 + akar kuadrat dari 7 ^ 2 + akar kuadrat dari 7 ^ 3 + akar kuadrat dari 7 ^ 4 + akar kuadrat dari 7 ^ 5?
Sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) Hal pertama yang dapat kita lakukan adalah membatalkan root pada yang memiliki kekuatan genap. Karena: sqrt (x ^ 2) = x dan sqrt (x ^ 4) = x ^ 2 untuk semua nomor, kita dapat mengatakan bahwa sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 + sqrt (7 ^ 3) + 49 + sqrt (7 ^ 5) Sekarang, 7 ^ 3 dapat ditulis ulang sebagai 7 ^ 2 * 7, dan 7 ^ 2 itu bisa keluar dari root! Hal yang sama berlaku untuk 7 ^ 5 tetapi ditulis ulang sebagai 7 ^ 4 * 7 sqrt (7) + sqrt (7 ^ 2) + sqrt (7 ^ 3) + sqrt (7 ^ 4) + sqrt (7 ^ 5) = sqrt (7) + 7 +